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Abstract

A geometric model of charge collection has been developed to measure the Lorentz

angle in silicon sensors. The model relates the track inclination to the average cluster

width. A Lorentz angle of 19.6 ± 0.27 +1.0
−0.5

◦ was measured by fitting the model to

cosmic ray data collected with the double–sided silicon strip sensors of the ATHENA

antihydrogen detector. These measurement corresponds to holes drifting in sensors

operated at 130 K, in a 3 T magnetic field and with an average internal electric field

of 1.3 kV/cm. Comparisons of charge sharing between strips and track residuals for

data taken with and without magnetic field are also presented and support this

measurement.
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1 Introduction

Modern physics experiments commonly use precise (<50 µm position res-

olution) silicon strip and pixel detectors in strong magnetic fields (>1 T).

Electrons and holes propagate under the influence of an electric field to the

implants where they are collected. In the presence of a magnetic field, the

Lorentz force tilts the drift direction with an angle λ and displaces the recon-

structed position [1].

The magnitude of the Lorentz angle and the correction to be applied to the

reconstructed position can be measured in many different ways [2–4]. In this ar-

ticle we introduce a geometric model that describes the charge spread amongst

strips. This model is applicable to both electrons and holes and may be directly

applied to data. We have applied the model to cosmic ray data to measure the

Lorentz angle for propagating holes in silicon strip sensors. Further crosschecks

that investigate charge sharing and track residuals support this measurement.

This paper is organized as follows: in section 2 a short description of the model

is provided, in section 3 the model is applied to the data and the measurement

is described, sections 4 and 5 respectively present the crosschecks of the charge

spread and track residuals, and Appendix A contains a detailed derivation of

the geometrical model.

2 Charge spread model

Due to the propagation of charge carriers along the Lorentz angle, the charge

spread at the collection surface is distorted in length and displaced, as shown

in Fig. 1. Tracks that traverse the silicon parallel to the Lorentz deflection
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(Fig. 1a) generate the shortest charge spread and have similar charge collection

properties to tracks that cross perpendicular to the sensor plane in the absence

of a magnetic field. The shift in the mean position of the a cluster is given by

∆x =
t

2
tan λ, (1)

where t is the depletion depth. The resulting charge spread is given by

Lc = t |tan θ − tan λ| , (2)

where the angle θ is the inclination of the track in the direction perpendicular

to the strips, as shown in Fig. 1. The track length d is given by

d= t
√

tan2 θ + tan2 φ + 1, (3)

where the angle φ corresponds to the inclination of the track in the direction

parallel to the strips. The curvature in the magnetic field has been neglected.
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Fig. 1. Cross section of a sensor showing the deflected charge spread Lc for charge

carriers (holes) generated along various charged trajectories and that propagate

along the Lorentz angle λ. The readout pitch is p.

Lc is related to the measurable quantity 〈ns〉, the average number of strips

above a given charge threshold. A model of 〈ns〉 versus track geometry is

derived under the following assumptions: (i) track entry positions are uni-

formly distributed between readout strips, (ii) the Lorentz deflection is con-
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stant throughout the depletion depth, (iii) the charge is linearly shared be-

tween adjacent strips, and (iv) the energy loss per unit length µ is constant.

Linear charge sharing is a good approximation for silicon micro–strip sensors

with floating strips that distribute charge between readout strips. This as-

sumption is motivated and discussed in Sec. 4. In reality, energy loss within

the silicon thickness is not constant, but follows a Landau distribution with a

long tail towards higher energy depositions. Hence, clusters with similar av-

erage energy loss per unit length must be selected from the data in order to

better satisfy assumption (iv).

The quantity 〈ns〉 is a function of track inclination (θ, φ). With these angles,

the path length d and the cluster width Lc are known. Furthermore, the total

energy deposited µd and ρc = µd/Lc, the energy per unit length along the

readout plane, are also known. However, the impact position with respect to

strip locations is not required, since 〈ns〉 is calculated by averaging the entry

positions over one readout pitch. Under the assumption that hit positions

are uniformly distributed, the average 〈ns〉 is twice the distance xth from the

center of a cluster to the position of a readout strip with a charge signal equal

to the charge threshold Cth divided by the readout pitch:

〈ns〉=
2xth

p
. (4)

The mathematical derivation of xth is given in Appendix A. For a given sensor

geometry xth depends only on the Lorentz deflection λ, the track inclination

angles θ and φ, and the charge threshold Cth. Often the Lorentz angle is

determined by measuring the angle corresponding to the minimum value of

〈ns〉 [2,5]. However, in our model the minimum does not occur for θ = λ, but is
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offset towards tracks with smaller |θ| values which produce a smaller number

of charge carriers.

3 Lorentz angle measurement

This model has been used to measure the Lorentz deflection in sensors oper-

ated at a temperature of 130 K in a 3 T magnetic field. The measurement was

performed with cosmic ray data acquired with the detector [6] used by the

ATHENA [7,8] antihydrogen experiment at CERN. The micro–strip sensors

were produced by SINTEF (Norway) on ≈16 kOhm n–type, 〈111〉 oriented

base material of 380 µm thickness. The sensors are 82 × 19 mm2. The p–sides

of the sensors (collecting holes) are segmented into 384 strips of 46.5 µm pitch

with 32 µm implant width and 14.5 µm spacing. Every third strip is metallized

to establish an AC–coupling to the readout electronics, while the two inner

strips are left floating. The resulting readout pitch is 139.5 µm. The strips are

surrounded by a 6 fold progressive multi guard ring structure of the SINTEF

type. The n–sides of these sensors are divided into 64 DC coupled pads of

1.25 mm width and 60 µm spacing. These pads are oriented perpendicular to

the strips and are individually surrounded by p–stop rings with a guard ring

around the border of the sensor. The sensor depletion voltage is approximately

30 V, determined by C–V measurements. However, we operate at a voltage

of 65 V to insure good isolation between the n–side structures. This produces

an average electric field of about 1.3 kV/cm. A more detail description of the

sensors may be found in [6].

The ATHENA detector consists of two concentric cylindrical layers with radii

of approximately 4 cm and 5 cm. Each layer contains 16 modules that have an
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active length of 16.2 cm. The modules are made of two sensors and readout

electronics glued onto a silicon support structure. The central axis is parallel to

a homogenous 3 T solenoidal magnetic field. Thus, charge drift in the sensors is

perpendicular to the magnetic field. Impact positions for charged particles are

reconstructed with a center of gravity algorithm on clusters of charge collected

by adjacent strips. Cosmic ray trajectories are then reconstructed from the four

3D points by requiring charged particles to fully traverse both cylinders. The

four spatial measurements are fitted with a helix for data acquired with the

magnetic field on, and a straight line for data without magnetic field.

To better satisfy the constant energy loss constraint, (iv) in Sec. 2, we se-

lect clusters with an average energy loss per unit length within ± 15% of

the most probable value (0.60 ADC counts/µm). This range is shown by the

shaded region in Fig. 2. In particular, the cut towards high energy loss sup-

presses clusters that contain higher–energy secondary electrons (δ rays) that

artificially elongate clusters.
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Fig. 2. Distribution of the average energy loss per µm. Clusters in the shaded region

were selected for this analysis.

The Lorentz angle was measured by fitting the model to distributions of 〈ns〉

as a function of track inclination. The data sample was divided into 21 in-

tervals in φ, each of 4◦ width, and 41 θ bins. Both angles affect the path

length and consequently the total deposited energy, while only θ determines
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Fig. 3. Distribution of the average number of strips vs. the inclination angle θ in

three intervals of φ; about φ = -20◦ (a), 0◦ (b) and 20◦ (c) for field–off (circles) and

field–on (crosses) data. The lines show the fits of the model to the data.

the charge spread across the strips. Equation 4 was fitted to the measured

distributions, three of which are shown in Fig 3. As expected, the data taken

without magnetic field are symmetric around θ = 0, while data taken with the

magnetic field on are shifted towards positive values.

The model describes the data well over its entire range (−82 < θ < 82◦ and

−42 < φ < 42◦). In the fits the readout pitch and µ were fixed to 139.5

µm and 0.60 ± 0.09 ADC counts/µm, respectively. The remaining parameters

(t, Cth and λ) were left free in the fits and were later compared with their
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expected values. Parameters t and Cth extracted from the fits in the various

φ regions fluctuate statistically about average values. For field–off data the

extracted values are t = 366.5 ± 1.1 µm and Cth = 38.6 ± 0.4 (stat) ± 5.8

(syst) ADC counts. For the field–on data the values are t = 359.9 ± 2.9 µm

and Cth = 33.3 ± 0.9 (stat) ± 5.0 (syst) ADC counts. These values are fairly

close to the nominal values of t = 380 ± 15 µm and Cth = 50 ADC counts, but

are systematically lower than the expected values. We ascribe this systematic

offset to the assumption that charge carriers are uniformly generated along

trajectories, to the finite range of accepted µ values and to the correlation

between them in Eq. A.9. The systematic uncertainty on the Lorentz angle

measurement was estimated by repeating the fits with the parameters t and

Cth varied around their expected values (350 < t < 400 µm and 25 < Cth < 75

ADC counts). Variations in the depletion thickness did not introduce a sizable

systematic uncertainty, while a systematic uncertainty of +1.0
−0.5

◦ was observed

when varying Cth.

Fig. 4 shows the extracted values of the Lorentz angle as a function of the

impact angle φ for data with and without magnetic field. The averages for

field–off and field–on are λ = -0.08 ± 0.12◦ and 19.6 ± 0.27 +1.0
−0.5

◦, respectively.

As expected the field–off measurement is consistent with zero.

4 Charge sharing

The fraction of the charge collected between the strip with the highest signal

and its higher adjacent neighbor is given by

η =
Ql

Qr + Ql

, (5)
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Fig. 4. Distribution of the Lorentz angle λ vs. φ for field–off (circles) and field–on

(crosses) data.

where Ql and Qr are the charge collected by left and right strip. It strongly de-

pends on the charge spread Lc. Tracks traversing the sensor along the Lorentz

deflection lead to a small charge spread that is mainly collected by two strips.

In this case, the value of η depends on the hit position with respect to the lo-

cation of the readout strips. The distribution of η for tracks with hit positions

uniformly distributed between two strips reveals features of the sensor. For

instance, the capacitive coupling between the two inner floating strips and the

readout strips is exhibited by the enhancements near η = 0.33 and η = 0.66 in

Fig. 5a. Two peaks near η = 0.1 and η = 0.9 are typically present in data taken

without a zero suppressed readout. Our data was taken with zero suppressed

readout and strips that collect a small amount of charge were therefore ig-

nored. For this reason we have equally distributed single strip events between

the η = 0 and η = 1.0 bins in Figure 5.

As the track inclination deviates from the direction of the Lorentz deflection,

such that p/2 < Lc < p, the smearing of charge smoothes the η distribution

(Fig. 5b). For track inclinations that generate a large charge spread (Lc >

3p), the inner strips collected a similar amount of charge. Therefore, the η
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Fig. 5. Distributions of η for field–off (circles) and field–on data (crosses) in the

charge spread bins of Lc < p/4 (a), p/2 < Lc < p (b) and 3p < Lc < 4p (c).

distribution becomes narrow around η = 0.5 (Fig. 5c).

Since the η distributions strongly depend on Lc, which in turn depends on

the Lorentz angle (see Eq. 2), the Lorentz deflection λ can be checked by

comparing field–off and field–on distributions. Figure 5 shows comparisons of

field–on (λ = 19.6◦) and field–off (λ = 0◦) η distributions in different Lc bins.

The observation that the η distributions agree in all Lc bins is a confirmation

that the appropriate Lorentz angle has been used in the calculations of Lc.

The interstrip position and the charge sharing function can be obtained using

the η distribution for crossing angles almost parallel to the Lorentz deflection

(Lc < 10 µm, similar to Fig 5a) [9]. For a given η, the distance x between the

hit position and a readout strip is given by

10



x = p −
p

N

η
∫

0

dη′
dN

dη′
, (6)

under the assumptions that hit positions and detection efficiency are uniform

between two readout strip. Where N is the total number of events. The η

distribution as a function of x is shown in Fig. 6. This distribution is directly

related to the charge sharing function dQ/dx through

η(x) =
1

ρc

dQ

dx
, (7)

and is well described by linear charge sharing, a line with a slope of -1.0 and

intercept at 1.0. This observation justifies the choice of linear charge sharing in

the model (Eq. A.2). The larger deviations from the linear approximation near

x = 0 and x = 1 are caused by the corresponding spikes in the η distribution

and are an artifact of the zero suppressed readout.

m)µx/p (p = 139.5 
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(x
)

η

0

0.2

0.4

0.6

0.8

1

Fig. 6. Distribution of η vs. the interstrip position x.

5 Shift in the measured coordinates

Charge drift along the Lorentz angle translates into a shift in the reconstructed

position (Eq. 1). Position shifts are apparent when the reconstructed position
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of one of the hits is compared to the position where the helical path of the

three remaining hits crosses the sensor. The distribution of this residual, ∆s,

is shown in Fig. 7. In the ATHENA detector the propagation direction of

the holes is inward for the inner layer and outward for the outer layer. Thus

resulting in opposing Lorentz angle displacements between the layers that

not only shift close hit positions in opposing directions, but also substantially

modify the helix parameterization of tracks. The magnified displacement ∆s ≈

300 µm (uncorrected data in Fig. 7) is much larger than the expected single

cluster displacement of ∆x = 67.7 µm for λ = 19.6◦.

To correct for the displacement caused by the drift along the Lorentz angle,

all cluster positions were shifted by -67.7 µm along the ~E × ~B direction. The

corrected distribution is also shown in Fig. 7. This distribution is in good

agreement with the field–off distribution and confirms that the correct Lorentz

angle was used to calculate ∆x.
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Fig. 7. Distribution of track residuals for field–off data (circles), corrected field–on

data (crosses) and uncorrected field–on data (stars).
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6 Conclusion

A model relating charge collection in silicon strip sensors to the Lorentz angle

has been presented and fitted to data. With this model we have found the

Lorentz deflection to be λ = 19.6 ± 0.27 +1.0
−0.5

◦ for propagating holes in silicon

strip sensors operating at 130 K, in a 3 T magnetic field and with an average

internal field of 1.3 kV/cm. Comparisons of charge sharing and track residual

distributions support this measurement. This result is also in good agreement

with other low temperature measurements made using a different technique

[3].
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A Appendix: Derivation of xth

In this appendix the variable xth used in the calculation of 〈ns〉 (Eq. 4) is

derived. Precisely, xth is the distance between a strip and the center of a cluster

when the charge collected by that strip is equal to the charge threshold Cth.

The charge collected by a strip is given by

C =

xc+Lc/2
∫

xc−Lc/2

dx
dQ

dx
. (A.1)
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When linear charge sharing is assumed, dQ/dx is given by

dQ

dx
= ρc

[

p − |x|

p

]

Θ (p − |x|) . (A.2)

Θ(y) is the unit step function 1 . For our application the linear charge sharing

assumption is supported by Fig. 6. The model can also be extended to other

charge sharing functions by modifying Eq. A.2.

We define two types of strips within clusters. Enclosed strips are at least at a

distance p from both ends of the cluster. Hence, all enclosed strips mathemat-

ically collect the same amount of charge ρcp. All other strips are considered

edge strips. Unlike enclosed strips, the the amount of charge collected by an

edge strip depends on the cluster position.

For edge strips there are four classes of charge collection integrals (Eq. A.1).

The appropriate class for a particular track inclination is determined by com-

paring the charge width Lc to the minimum charge width m required from

an adjacent strip to produce a signal above threshold. For Cth < ρcp/2, m is

given by

m =

√

2pCth

ρc
, (A.3)

and for Cth ≥ ρcp/2

m = 2p −

√

2p2 −
2pCth

ρc

. (A.4)

These four classes of integrals are sketched in Figure A.1. In class (a) the

cluster width Lc is smaller than the pitch and the minimum charge spread m

1 Θ(y) = 0 when y < 0 and Θ(y) = 1 when y > 0.
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(Eq. A.3). Thus, the charge lies between two adjacent strips. In class (b) the

charge spread is larger than m (Eq. A.3), but does not surround the strip.

So, one end of the charge spread is located at a distance m from an adjacent

strip. In these two classes (a) and (b) edge strips beyond the edges of Lc may

be above threshold. However, for classes (c) and (d) ρc is so low that the

charge spread must surround edge strips for them to be above threshold. In

class (c) the charge width Lc is smaller than m (Eq. A.4), therefore neither

end of the cluster extends beyond a neighboring strip. In (d) Lc is larger than

the minimum charge spread m (Eq. A.4). Thus, one end of the charge spread

is a distance m from an adjacent strip and the other extends beyond that

neighboring strip.
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Fig. A.1. Diagrams of the charge collected by a strip when it is at threshold, ordered

in decreasing ρc.

Detection inefficiencies are dealt with before they enter into the xth calculation.
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In cases where, independent of cluster position, the charge density is lower than

that required by the charge threshold, xth is set to 0 so that 〈ns〉 = 0. This

occurs when Lc < 2p and

Cth >µd

(

1 −
Lc

4p

)

, (A.5)

or when Lc ≥ 2p and

Cth >ρcp. (A.6)

In cases where, independent of cluster position, the charge density is sufficient

to only produce one strip above threshold, xth is set to p/2 so that 〈ns〉 = 1.

This condition occurs when Lc < p and

Cth >
µd

2
, (A.7)

or when p ≤ Lc < 3p and

Cth >ρc

(

3

4
Lc −

p

8
−

L2
c

8p

)

. (A.8)

For all other track geometries 〈ns〉 is above 1 and xth is determined by setting

the charge C collected by an edge strip (see Eq. A.1) equal to the charge

threshold Cth. For class (a) geometries, where Lc = 0 or Lc < m, xth is given

by

xth = p −
Cthp

µd
, (A.9)

while for classes (b) and (d), where Lc ≥ m,

xth = p +
Lc

2
− m. (A.10)
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Note that class (c) geometries are previously handled by Eqs. A.5, A.7 and

A.8. Equations A.1 – A.10 only depend on the Lorentz deflection λ, the track

inclination angles θ and φ, the charge threshold Cth and the sensor geometry.
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