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Abstract

This report reviews the achievements of the Crystal Barrel experiment at the Low Energy
Antiproton Ring (LEAR) at CERN. During seven years of operation Crystal Barrel has collected
very large statistical samples in pp annihilation, especially at rest and with emphasis on final
states with high neutral multiplicity. The measured rates for annihilation into various two-
body channels and for electromagnetic processes have been used to test simple models for the
annihilation mechanism based on the quark internal structure of hadrons. The production of φ
mesons is larger than predicted in several annihilation channels. Important contributions to the
spectroscopy of light mesons have been made. The exotic ρ̂(1405) with quantum numbers JPC

= 1−+ has been observed in its ηπ decay mode. Two 2−+ isoscalars, η2(1645) and η2(1870),
and the 0−+ isoscalar η(1410) have been observed in the ηππ decay channel. From three-
body annihilations three 0++ mesons, a0(1450), f0(1370) and f0(1500) have been established
in various decay modes. One of them, f0(1500), may be identified with the expected ground
state scalar glueball.

∗To appear in Reviews of Modern Physics
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1 Introduction

Low energy antiproton-proton annihilation at rest is a valuable tool to investigate phenom-
ena in the low energy regime of Quantum Chromodynamics (QCD). Due to the absence of
Pauli blocking, the antiproton and proton overlap and one expects the interactions between
constituent quarks and antiquarks (annihilation, pair creation or rearrangement) to play an
important role in the annihilation process. From bubble chamber experiments performed in
the sixties (Armenteros and French, 1969) one knows that annihilation proceeds through qq
intermediate meson resonances. The ω(782), f1(1285), E/η(1440) and K1(1270) mesons were
discovered and numerous properties of other mesons (a0(980), K∗(892), φ(1020), a2(1320))
were studied in low energy pp annihilation1. With the advent of QCD one now also predicts
states made exclusively of gluons (glueballs), of a mixture of quarks and gluons (hybrids) and
multiquark states, all of which can be produced in pp annihilation.

With the invention of stochastic cooling and the operation of the Low Energy Antiproton
Ring (LEAR) from 1983 to 1996, intense and pure accelerator beams of low momentum an-
tiprotons between 60 and 1940 MeV/s were available at CERN. It is impressive to compare the
high flux of today’s antiproton beams (> 106 p/s) with the rate of about 1 p every 15 minutes
in the early work when the antiproton was discovered, back in 1955 (Chamberlain, 1955).

The author has been asked by the Editors of Rev. Mod. Phys. to write a report on Crystal
Barrel results. A general review on light quark spectroscopy or a detailed survey of the pp
annihilation mechanism are therefore beyond the scope of this review and can be found in the
literature (Blüm, 1996; Landua, 1996; Amsler and Myhrer, 1991; Dover, 1992). The topics
emphasized in this review reflect the personal taste and scientific interest of the author. Some
of the results on pd annihilation will not be reviewed here. They include the observation of the
channels pd → π0n, ηn, ωn (Amsler, 1995a), pd → ∆(1232)π0 (Amsler, 1995b) which involve
both nucleons in the annihilation process.

Alternative analyses of Crystal Barrel data have been performed by other groups or by in-
dividuals from within the collaboration. I shall not describe them in detail since they basically
lead to the same results. However, small differences e.g. in masses and widths of broad reso-
nances are reported. They can be traced to the use of a more flexible parametrization involving
additional parameters (e.g. Bugg (1994)), and, most importantly, to the inclusion of data from
previous experiments studying different reactions like central collision or inelastic πp scattering
(e.g. Abele (1996a), Bugg (1996), Anisovich (1997)). In order not to confuse with foreign data
and unknown biases the contributions that Crystal Barrel has made to spectroscopy, I shall
only deal with experimental results published by the Crystal Barrel collaboration or submit-
ted for publication until 19972, but will provide a comparison with previous data, whenever
appropriate.

The experiment started data taking in late 1989 and was completed in autumn 1996 with
the closure of LEAR. The Crystal Barrel was designed to study low energy pp annihilation with
very high statistics, in particular annihilation into n charged particles (n-prong) and m neutrals
(π0, η, η′ or ω) with m ≥ 2, leading to final states with several photons. These annihilation
channels occur with a probability of about 50% and have not been investigated previously. They
are often simpler to analyze due to C-parity conservation which limits the range of possible
quantum numbers for the intermediate resonances and the pp initial states.

1Throughout this review mesons are labelled with the names adopted in the 1996 issue of the Review of
Particle Physics (Barnett, 1996).

2All Crystal Barrel publications are listed with their full titles in the reference section.
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Most of the data analyzed so far were taken with stopping antiprotons in liquid hydrogen on
which I shall therefore concentrate. This article is organized as follows: After a brief reminder
of the physical processes involved when antiprotons are stopped in liquid hydrogen (section 2),
I shall describe in section 3 the Crystal Barrel apparatus and its performances. The review then
covers results relevant to the annihilation mechanism and the roles of quarks in the annihilation
process (section 4). Electromagnetic processes are covered in section 5. The observation of a
strangeness enhancement may possibly be related to the presence of strange quarks in the
nucleon (section 6). After describing the mathematical tools for extracting masses and spins of
intermediate resonances (section 7) I shall review in sections 8 to 10 what is considered to be
the main achievement, the discovery of several new mesons, in particular a scalar (JP = 0+)
state around 1500 MeV, which is generally interpreted as the ground state glueball. Section 11
reports on the status of hybrid mesons. Section 12 finally describes the status of pseudoscalars
in the 1400 MeV region.

2 Proton-Antiproton Annihilation at Rest

Earlier investigations of low energy pp annihilation have dealt mainly with final states involving
charged mesons (π±, K±) or KS → π+π−, with at most one missing (undetected) π0, due to
the lack of a good γ detection facility (for reviews, see Armenteros and French (1969), Sedlák
and Šimák (1988) and Amsler and Myhrer (1991)).

The average charged pion multiplicity is 3.0 ± 0.2 for annihilation at rest and the average
π0 multiplicity is 2.0 ± 0.2. The fraction of purely neutral annihilations (mainly from channels
like 3π0, 5π0, 2π0η and 4π0η decaying to photons only) is (3.9 ± 0.3) % (Amsler, 1993a).
This number is in good agreement with an earlier estimate from bubble chambers, (4.1 +0.2

−0.6)
% (Ghesquière, 1974). In addition to pions, η mesons are produced with a rate of about 7 %
(Chiba, 1987) and kaons with a rate of about 6% of all annihilations (Sedlák and Šimák, 1988).

In fireball models the pion multiplicity N = N+ +N− +N0 follows a Gaussian distribution
(Orfanidis and Rittenberg, 1973). The pion multiplicity distribution at rest in liquid hydrogen
is shown in Fig. 1. Following the model of Pais (1960) one expects on statistical grounds the
branching ratios to be distributed according to 1/(N+!N−!N0!) for a given multiplicity N . The
open squares show the predictions normalized to the measured branching ratios from channels
with charged pions and N0 ≤ 1 (Armenteros and French, 1969). The full circles show the data
from bubble chambers, together with Crystal Barrel results for N0 > 1. The fit to the data
(curve) leads to σ = 1 for a Gauss distribution assuming 〈N〉 = 5. The open circles show
an estimate from bubble chamber experiments which appears to overestimate the contribution
from N = 5 (Ghesquière, 1974).

2.1 S- and P-wave annihilation at rest

Stopping antiprotons in hydrogen are captured to form antiprotonic hydrogen atoms (proto-
nium). The probability of forming a pp atom is highest for states with principal quantum
number n ∼ 30 corresponding to the binding energy (13.6 eV) of the K-shell electron ejected
during the capture process. Two competing de-excitation mechanisms occur: (i) the cascade to
lower levels by X-ray or external Auger emission of electrons from neighbouring H2-molecules
and (ii) Stark mixing between the various angular momentum states due to collisions with
neighbouring H2 molecules. Details on the cascade process can be found in Batty (1989). In
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Figure 1: Pion multiplicity distribution for pp annihilation at rest in liquid hydrogen. Open
squares: statistical distribution; full circles: data; open circles: estimates from Guesquière
(1974). The curve is a Gauss fit assuming 〈N〉 = 5.

liquid hydrogen, Stark mixing dominates (Day, 1960) and the pp system annihilates with the
angular momentum ` = 0 from high S levels (S-wave annihilation) due to the absence of angu-
lar momentum barrier. The initial states are the spin singlet (s = 0) 1S0 and the spin triplet
(s = 1) 3S1 levels with parity P = (−1)`+1 and C-parity C = (−1)`+s, hence with quantum
numbers

JPC(1S0) = 0−+ and JPC(3S1) = 1−−. (1)

The cascade, important in low density hydrogen (e.g. in gas), populates mainly the n = 2
level (2P) from which the pp atom annihilates due its small size: The Kα transition from 2P to
1S has been observed at LEAR in gaseous hydrogen (Ahmad, 1985; Baker, 1988). Compared
to annihilation, it is suppressed with a probability of (98 ± 1) % at atmospheric pressure.
Annihilation with relative angular momentum ` = 1 (P-wave annihilation) can therefore be se-
lected by detecting the L X-rays to the 2P levels, in coincidence with the annihilation products.
This procedure permits the spectroscopy of intermediate meson resonances produced from the
P-states

JPC(1P1) = 1+−, JPC(3P0) = 0++,

JPC(3P1) = 1++ and JPC(3P2) = 2++. (2)

Annihilation from P-states has led to the discovery of the f2(1565) meson (May, 1989).
The much reduced Stark mixing in low density hydrogen also allows annihilation from higher

P levels. At 1 bar, S- and P-waves each contribute about 50% to annihilation (Doser, 1988).
Annihilation from D-waves is negligible due to the very small overlap of the p and p wave
functions.
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The assumption of S-wave dominance in liquid hydrogen is often a crucial ingredient to
the amplitude analyses when determining the spin and parity of an intermediate resonance
in the annihilation process, since the quantum numbers of the initial state must be known.
The precise fraction of P-wave annihilation in liquid has been the subject of a longstanding
controversy. The reaction pp → π0π0 can only proceed through the P- states 0++ or 2++ (see
section 4.1) while π+π− also proceeds from S-states (1−−). The annihilation rate B(π0π0) for
this channel in liquid has been measured earlier by several groups but with inconsistent results
(Devons, 1971; Adiels, 1987; Chiba, 1988).

Crystal Barrel has determined the branching ratio for pp → π0π0 in liquid by measuring
the angles and energies of the four decay photons (Amsler, 1992a). The main difficulties in
selecting this channel are annihilation into 3π0 which occurs with a much higher rate and, most
importantly, P-wave annihilation in flight. The former background source can be reduced with
the good γ detection efficiency and large solid angle of Crystal Barrel, while the latter can be
eliminated thanks to the very narrow stop distribution from cooled low-energy antiprotons from
LEAR (0.5 mm at 200 MeV/c). The small contamination from annihilation in flight can be
subtracted from the stopping distribution by measuring the annihilation vertex. The latter was
determined by performing a 5 constraints (5C) fit to pp→ π0π0, assuming energy conservation,
two invariant 2γ-masses consistent with 2π0 and momentum conservation perpendicular to the
beam axis. The branching ratio for π0π0 is

B(π0π0) = (6.93± 0.43)× 10−4, (3)

in agreement with Devons (1971) but much larger than Adiels (1987) and Chiba (1988). From
the annihilation rate B(π+π−)2P into π+π− from atomic 2P-states (Doser, 1988) one can, in
principle, extract the fraction fp of P -wave annihilation in liquid3:

fp = 2
B(π0π0)

B(π+π−)2P

= (28.8± 3.5)%. (4)

This is a surprisingly large contribution. However, Eq. (4) assumes that the population of
the fine and hyperfine structure states is the same for the 2P as for the higher P levels which
is in general not true. In liquid, strong Stark mixing constantly repopulates the levels. A
P-state with large hadronic width, for instance 3P0 (Carbonell, 1989), will therefore contribute
more to annihilation than expected from a pure statistical population. On the other hand, in
low pressure gas or for states with low principal quantum numbers the levels are populated
according to their statistical weights. The branching ratio for annihilation into a given final
state is given in terms of the branching ratios BS

i and BP
i from the two S-, respectively the

four P-states (Batty, 1996):

B = [1− fP (ρ)]
2∑
i=1

wSi E
S
i (ρ)BS

i

+fP (ρ)
4∑
i=1

wPi E
P
i (ρ)BP

i , (5)

where ρ is the target density. The purely statistical weights are

wSi =
2Ji + 1

4
, wPi =

2Ji + 1

12
. (6)

3In Doser (1988) fp was found to be (8.6 ± 1.1) %, when using the most precise measurement for π0π0

available at that time (Adiels, 1987).
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Figure 2: Fraction fP of P-wave annihilation as a function of hydrogen density (curve). The
dots with error bars give the results from the optical model of Dover and Richard (1980) using
two-body branching ratios (adapted from Batty (1996)).

The enhancement factors Ei describe the departure from pure statistical population (Ei=1).
For π0π0 in liquid one obtains

B(π0π0) = fP (liq)[
1

12
E3P0

(liq)B3P0
(π0π0)

+
5

12
E3P2

(liq)B3P2
(π0π0)], (7)

and for π+π− from 2P states

B(π+π−)2P = 2[
1

12
B3P0

(π0π0) +
5

12
B3P2

(π0π0)]. (8)

It is obviously not possible to determine fP (liq) unless the enhancement factors are unity (and
hence Eq. (4) follows). The enhancement factors have been determined with an X-ray cascade
calculation (Batty, 1996) using the observed yields of K and L X-rays in antiprotonic atoms and
the predicted hadronic widths from optical potential models of the pp interaction (Carbonell,
1989). Batty (1996) finds E3P0

(liq) = 2.1− 2.6 and E3P2
(liq) = 0.96− 1.06, depending on the

potential model. The branching ratios Bi and fP (ρ) were then fitted to the measured two-body
branching ratios for pp → π0π0, π+π−, K+K−, KSKS and KSKL at various target densities,
with and without L X-ray coincidence. The fraction of P-wave annihilation is shown in Fig.
2 as a function of density. Except at very low density one obtains a good agreement between
data and cascade calculations. In liquid hydrogen one finds

fP (liq) = (13± 4)%, (9)

a more realistic value when compared to Eq. (4). For meson spectroscopy using liquid hydrogen,
one therefore assumes annihilation from S-waves and neglects P-waves, unless a significantly
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better and stable fit can be achieved by adding P-waves. However, depending on the complexity
of the final state, the inclusion of P- waves becomes prohibitive due to the large number of fit
parameters.

3 The Crystal Barrel Experiment

3.1 Detector

Figure 3 shows a sketch of the Crystal Barrel detector (Aker, 1992). The incoming antiprotons
entered a 1.5 T solenoidal magnet along its axis and interacted in a liquid hydrogen target, 44
mm long and 17 mm in diameter. A segmented silicon counter in front of the target defined
the incoming beam. The final state charge multiplicity was determined online with two cylin-
drical proportional wire chambers (PWC). The charged particle momentum was measured by
a jet drift chamber (JDC) which also provided π/K separation below 500 MeV/c by ionization
sampling.

p

7

4

6

5
1

23

Figure 3: The Crystal Barrel detector. 1,2 - yoke, 3 - coil, 4 - CsI(Tl) barrel, 5 - JDC, 6 -
PWC’s, 7 - LH2 target.

Photons were detected in a barrel-shaped assembly of 1,380 CsI(Tl) crystals, 16.1 radia-
tion lengths long (30 cm), with photodiode readout. The crystals were oriented towards the

9



   

interaction point and covered a solid angle of 0.97 ×4π. Each crystal, wrapped in teflon and
aluminized mylar, was enclosed in a 100 µm thick titanium container. The light (peaking at
550 nm) was collected at the rear end by a wavelength shifter and the re-emitted light was
detected by a photodiode glued on the edge of the wavelength shifter. With the low electronic
noise of typically 220 keV the energy resolution was

σ

E
=

0.025

E[GeV]
1
4

(10)

and photons could be detected efficiently down to 4 MeV. The angular resolution was typically
σ = 20 mrad for both polar and azimuthal angles. The mass resolution was σ = 10 MeV for
π0 and 17 MeV for η → 2γ.

A rough calibration of the electromagnetic calorimeter was first obtained with traversing
minimum ionizing pions which deposit 170 MeV in the crystals. The final calibration was
achieved with 0-prong events using 2γ invariant masses from π0 decays. An energy dependent
correction was applied to take shower leakage at the rear end of the crystals into account. The
stability of the calibration was monitored with a light pulser system.

The JDC had 30 sectors, each with 23 sense wires at radial distances between 63 mm and
239 mm) read out on both ends by 100 MHz flash ADC’s. The position resolution in the
plane transverse to the beam axis (rφ coordinates) was σ = 125 µm using slow gas, a 90:10 %
CO2/isobutane mixture. The coordinate z along the wire was determined by charge division
with a resolution of σ = 8 mm. This led to a momentum resolution for pions of σ/p '2 % at
200 MeV/c, rising to ' 7% at 1 GeV/c for those tracks that traversed all JDC layers.

The z coordinates were calibrated by fitting straight tracks from 4-prong events without
magnetic field. The momentum calibration was performed with monoenergetic pions and kaons
from the two-body final states π+π− and K+K−. Pressure and temperature dependent drift
time tables were generated and fitted to the measured momentum distribution.

Figure 4: The silicon vertex detector. 1 - microstrip detectors, 2 - hybrids, 3 - readout elec-
tronics, 4 - cooling ring (from Regenfus (1997)).

In 1994 the JDC was replaced by a new jet drift chamber with only 15 sectors for the 6
innermost layers. In 1995 the PWC’s were also replaced by a microstrip vertex detector (SVX)

10



    

consisting of 15 single-sided silicon detectors arranged in a windmill configuration at a radial
distance of 13 mm around the target (Fig. 4). Each detector had 128 strips with a pitch of 50
µm running parallel to the beam axis. The increase of charge multiplicity between the SVX
and the inner layers of the JDC permitted to trigger on KS → π+π−. The SVX also provided
an improved vertex resolution in rφ and a better momentum resolution.

For annihilation at rest in liquid hydrogen the p incident momentum was 200 MeV/c with
typically 104 incident p/s to minimize pile-up in the crystals. For annihilation in gaseous
hydrogen the liquid target was replaced by a hydrogen flask at 13 bar. The incident momentum
was 105 MeV/c. Since the annihilation rate was higher than the maximum possible data
acquisition speed, a multilevel trigger could be used. The two PWC’s and the inner layers (2
- 5) of the JDC determined the charged multiplicity of the final state. Events with long tracks
could be selected for optimum momentum resolution by counting the charged multiplicity in the
outer layers (20 and 21) of the JDC. A hardwired processor determined the cluster multiplicity
in the barrel. A processor then fetched the digitized energy deposits in the barrel, computed all
two-photon invariant masses thus providing a trigger on the π0 or η multiplicity (Urner, 1995).

3.2 Photon reconstruction

We now briefly describe the photon reconstruction which is particularly relevant to the results
reviewed in this article. Photon induced electromagnetic showers spread out over several crys-
tals. The size of a cluster depends on the photon energy and varies from 1 to about 20 crystals.
The reconstruction of photons is done by searching for clusters of neighbouring crystals with
energy deposits of at least 1 MeV. The threshold for cluster identification (typically between 4
and 20 MeV) depends on the annihilation channel being studied. Local maxima with a prede-
fined threshold (typically between 10 and 20 MeV) are then searched for within clusters. When
only one local maximum is found, the photon energy is defined as the cluster energy and the
direction is given by the center of gravity of the crystals, weighted by their energies. When
n local maxima are found within a cluster, the latter is assumed to contain showers from n
photons. In this case the cluster energy EC is shared between the n subclusters of nine crystals
with energies Ei around the local maxima. Hence the photon energies are given by

Eγ,i =
Ei∑n
j=1 Ej

EC . (11)

Additional clusters mocking photons are due to shower fluctuations which may develop
small but well separated satellites in the vicinity of the main shower. These “split-offs” can
be removed by requiring a minimum separation between the showers. However, this cut may
reduce the detection efficiency for high energy π0’s since photons from π0 decay cluster around
the minimum opening angle. The opening angle between two photons with energies E1 ≤ E2

from π0 decay is given by

cosφ = 1− (1 +R)2

2γ2R
with R =

E1

E2

, (12)

where γ = Eπ0/mπ0 . Hence for all pairs of neighbouring clusters one calculates R and removes
the low energy clusters whenever cosφ is larger than given by Eq. (12), assuming the maximum
possible value of γ in the annihilation channel under consideration (Pietra, 1996).
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Clusters generated by ionizing particles can be removed by matching the impact points
extrapolated from the reconstructed tracks in the JDC. However, split-offs from charged parti-
cles are more cumbersome to eliminate. They are initiated, for example, from neutrons which
travel long distances before being absorbed. These split-offs can be suppressed by requiring
momentum and energy conservation in the annihilation process (kinematic fits).

3.3 Available data

The bulk of the Crystal Barrel data consists in pp annihilation at rest and in flight in liquid
hydrogen. As discussed above, annihilation from initial P-states is enhanced when using a
gaseous target. Annihilation in deuterium at rest allows the formation of NN bound states
(baryonium) below 2mN , the spectator neutron (or proton) removing the excess energy (for a
review on baryonium states, see Amsler (1987)). With a spectator proton one gains access to
pn annihilation, a pure isospin I = 1 initial state.

Table 1: Summary of data (in millions of events) with a minimum bias trigger (MB), for 0-, 2-,
4-prong and with more specialized triggers at rest (first three rows) and in liquid hydrogen at
high p momenta (in MeV/c).
LH2: liquid hydrogen; LD2: liquid deuterium; GH2: gaseous hydrogen.
a KS(→ π+π−)X, b π+π−π0π0η, c π0ηη, d 1-prong, e 3-prong, f π+π−π0η, g π+π−η

MB 0 2 4 Triggers
LH2 16.8 24.7 19.3 10.4 16.9a 8.5b 4.0c 0.4g

LD2 3.2 6.0 0.5 0.5 11.9a 8.1d 11.7e

GH2 8.6 18.0 14.3 8.2 6.4a

600 1.3 5.9 2.2 1.2a

900 20.0 19.4
1050 0.3 7.2
1200 1.6 10.4 6.0 2.0f

1350 1.0 11.5
1525 20.6 10.2 4.5
1642 0.1 11.1 12.5
1800 6.8 3.6
1900 13.6 14.5 15.7

The data collected by Crystal Barrel are shown in Table 1. Data were taken in liquid
hydrogen, gaseous hydrogen (13 bar) and in liquid deuterium with a minimum bias trigger
(requiring only an incident antiproton) or with the multiplicity trigger requiring 0-prong or
n-prong with long tracks in the JDC. In addition, data were collected with specialized triggers
enhancing specific final states. As a comparison, the largest earlier sample of annihilations at
rest in liquid was obtained by the CERN-Collège de France collaboration with about 100,000
pionic events and 80,000 events containing at least one KS → π+π− (Armenteros and French,
1969). The Asterix collaboration collected some 107 pionic events in gaseous hydrogen at 1 bar
(for a review and references see Amsler and Myhrer (1991)). The total number of annihilations
at rest in liquid hydrogen collected by Crystal Barrel is 108. The triggered 0-prong sample at
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rest (24.7×106 events) corresponds with a neutral branching ratio of 3.9 % (Amsler, 1993a) to
6.3×108 annihilations.

4 Annihilation into Two Mesons

The mechanism through which the pp system annihilates into two or more mesons is not un-
derstood in details. This is not surprising, since annihilation occurs in the non- perturbative
regime of QCD and therefore models must be used. A substantial theoretical effort has been
invested to predict the branching ratios for annihilation at rest into two or even three mesons
from initial S- and P-states. For a review of annihilation models and references, see Kerbikov
(1989) and Amsler and Myhrer (1991).

p

p

p

p

A R

Figure 5: Annihilation graph A and rearrangement graph R for pp annihilation into two mesons.

Since the proton and the antiproton wavefunctions overlap one expects quarks to play an
important role in the annihilation dynamics. For instance, pp annihilation into two mesons can
be described by the annihilation of two qq pairs and the creation of a new pair (annihilation
graph A) or by the annihilation of one qq pair and the rearrangement of the other two pairs
(rearrangement graph R), see Fig. 5. At low energies there is, however, no consensus as to which
operator should be used to describe the emission and absorption of gluons. Single gluons are
emitted and absorbed from 3S1 qq vertices, while for several gluons one assumes 3P0. Predictions
for the annihilation branching ratios based on these assumptions have been made by Green and
Niskanen (1987) and the dependence on angular momentum, spin and isospin has been studied
in detail by Dover (1992).

In a naive approach one assumes that only the flavor flow between initial and final states is
important (Genz, 1983; Hartmann, 1988). The Quark Line Rule (QLR) states that annihilation
into uu and dd is excluded if the A graph dominates, while annihilation into two dd mesons
is forbidden if R dominates (see Fig. 5). The OZI-rule (Okubo, 1963) is a special case of the
QLR: Annihilation into one or more ss mesons is forbidden. We shall confront these simple
rules below with Crystal Barrel data on two-meson annihilation.

Another approach, which we shall use, is the nearest threshold dominance model which
describes reasonably well the observed final state multiplicity as a function of p momentum
(Vandermeulen, 1988). The branching ratio for annihilation into two mesons with masses ma

und mb is given by

W = pC0Cab exp(−A
√
s− (ma +mb)2), (13)

where p is the meson momentum in the pp center of mass system with total energy
√
s, C0

a normalization constant and Cab a multiplicity factor depending on spin and isospin. The
constant A= 1.2 GeV−1 has been fitted to the cross section for pp annihilation into π+π− as
a function of p momentum. For annihilation into kaons the fit to kaonic channels requires the
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additional normalization factor C1/C0 = 0.15. Thus annihilation into the heaviest possible
meson pair is enhanced with respect to phase space p by the exponential form factor in Eq.
(13). This is natural in the framework of baryon exchange models which prefer small momentum
transfers at the baryon-meson vertices.

In more refined models the branching ratios for annihilation at rest depend on the atomic
wave function distorted by strong interaction at short distances (Carbonell, 1989). Predictions
for the branching ratios therefore depend on models for the meson exchange potential which
are uncertain below 1 fm. Also, the quark description has to be complemented by baryon and
meson exchanges to take the finite size of the emitted mesons into account.

In the absence of strong interaction the pp atomic state is an equal superposition of isospin
I = 0 and 1 states. Naively one would therefore expect half the protonium states to annihilate
into a final state of given isospin. However, pp to nn transitions occuring at short distances
may modify the population of I = 0 and I = 1 states and therefore enhance or reduce the
annihilation rate to a final state of given isospin (Klempt, 1990; Jaenicke, 1991). Nonetheless,
one expects that predictions for ratios of branching ratios for channels with the same isospin
and proceeding from the same atomic states are less sensitive to model dependence.

We now turn to the phenomenology of annihilation into two mesons, in particular two
neutral mesons for which new data from Crystal Barrel are available.

4.1 Annihilation into two neutral mesons

Consider a pair MM of charge conjugated mesons in the eigenstate of isospin I. The P -, C-
and G-parities are:

P (MM) = (−1)L, (14)

C(MM) = (−1)L+S, (15)

G(MM) = (−1)L+S+I , (16)

where L is the relative angular momentum and S the total spin. For the pp system with angular
momentum ` and spin s one has

P (pp) = (−1)`+1, (17)

C(pp) = (−1)`+s, (18)

G(pp) = (−1)`+s+I . (19)

For annihilation into two mesons the two sets of equations relate the quantum numbers of the
initial state to those of the final state since P , C, G and I are conserved. In addition, L, S, `
and s must be chosen so that the total angular momentum J is conserved:

|L− S| ≤ J ≤ L+ S, |`− s| ≤ J ≤ `+ s. (20)

The relations (14-16) can be used to determine L, S and I from P , C and G. For example for
a pair of non-strange charge conjugated mesons G is +1, while C = (−1)L. For two identical
neutral non-strange pseudoscalars (e.g. π0π0) with S = 0, C = +1 implies that L is even and
then Eq. (17) requires ` to be odd (annihilation from P-states only). Equation (16) further
requires with G = +1 that I = 0 and hence with Eq. (19) annihilation from the (I = 0) 0++

or 2++ atomic states.
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For a pair of non-identical neutral pseudoscalars (e.g. π0η) L may be odd and hence the
possible quantum numbers are 0++, 1−+, 2++, 3−+, etc. However, 1−+ and 3−+ do not couple
to pp since Eqs. (17) and (18) require ` even and s = 0, hence J even. Annihilation into two
neutral non-strange pseudoscalars is therefore forbidden from atomic S-states.

Crystal Barrel has measured the branching ratios for pp annihilation into two neutral light
mesons from about 107 annihilations into 0-prong (Amsler, 1993b). These data have been
collected by vetoing charged particles with the PWC’s and the internal layers of the JDC. The
lowest γ-multiplicity was four (e.g. π0π0, π0η) and the highest nine (e.g. ηω, with η → 3π0 and
ω → π0γ). To control systematic errors in the detection efficiency, some of these branching
ratios have been determined from different final state multiplicities. For example, η decays to
2γ and 3π0 and hence ηη is accessible from 4γ and 8γ events.

π0η
π0π0

ηη
ηω

π0ω
π0η'

0 500 1000 1500 2000
m (γ1γ2) [MeV]
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500
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2000

m
 (γ
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Figure 6: 2γ invariant mass distribution for a sample of 4γ events (6 entries/event).

Figure 6 shows a scatterplot of 2γ-invariant masses for events with 4γ. Events have been
selected by requiring four clusters in the barrel and applying momentum and energy conserva-
tion (4C fit). Signals from π0π0, π0η, ηη and even π0η′ are clearly visible. The dark diagonal
band at the edge is due to wrong combinations. The detection and reconstruction efficiency was
typically 40% for 4γ events, obtained by Monte Carlo simulation with GEANT. As discussed
above, two neutral pseudoscalars couple only to atomic P-states and are therefore suppressed
in liquid hydrogen. On the other hand, the channels π0ω and ηω couple to 3S1 and hence have
a larger branching ratio. In spite of the good detection efficiency of the detector one there-
fore observes the background signals from π0ω and ηω, where ω decays to π0γ with a missing
(undetected) photon.

Figure 7 shows the π0γ momentum distribution for pp→ 4π0γ events (8C fit requiring 4π0).
The peak at 657 MeV/c is due to the channel pp → ηω (η → 3π0, ω → π0γ). For these 9γ
events the detection efficiency was 10%.

The branching ratios are given in Table 2. They are always corrected for the unobserved
(but known) decay modes of the final state mesons (Barnett, 1996). For Crystal Barrel data
the absolute normalization was provided by comparison with π0π0 which has been measured
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Table 2: Branching ratios B for pp annihilation at rest in liquid. See Amsler and Myhrer (1991)
for annihilation in gaseous hydrogen. Further branching ratios from Dalitz plot analyses are
listed in Table 13 below.
a From ω → π0γ
b From ω → π+π−π0

c average between Baltay (1966), Espigat (1972) and Foster (1968a)
‡ Crystal Barrel experiment

Channel B Reference
e+e− 3.2 ± 0.9 10−7 Bassompierre (1976)
π0π0 6.93 ± 0.43 10−4 Amsler (1992a)‡

4.8 ± 1.0 10−4 Devons (1971)
π+π− 3.33 ± 0.17 10−3 Armenteros and French (1969)
π+π− 3.07 ± 0.13 10−3 Amsler (1993b)‡
π0η 2.12 ± 0.12 10−4 Amsler (1993b)‡
π0η′ 1.23 ± 0.13 10−4 Amsler (1993b)‡
π0ρ0 1.72 ± 0.27 10−2 Armenteros and French (1969)
π±ρ∓ 3.44 ± 0.54 10−2 Armenteros and French (1969)
ηη 1.64 ± 0.10 10−4 Amsler (1993b)‡
ηη′ 2.16 ± 0.25 10−4 Amsler (1993b)‡
ωπ0 5.73 ± 0.47 10−3 Amsler (1993b)a ‡

6.16 ± 0.44 10−3 Schmid (1991)b ‡
ωη 1.51 ± 0.12 10−2 Amsler (1993b)a ‡

1.63 ± 0.12 10−2 Schmid (1991)b ‡
ωη′ 0.78 ± 0.08 10−2 Amsler (1993b)‡
ωω 3.32 ± 0.34 10−2 Amsler (1993b)‡
ηρ0 4.81 ± 0.85 10−3 c

3.87 ± 0.29 10−3 Abele (1997a)‡
η′ρ0 1.29 ± 0.81 10−3 Foster (1968a)

1.46 ± 0.42 10−3 Urner (1995)‡
ρ0ρ0 1.2 ± 1.2 10−3 Armenteros and French (1969)
ρ0ω 2.26 ± 0.23 10−2 Bizzarri (1969)
K+K− 1.01 ± 0.05 10−3 Armenteros and French (1969)
K+K− 0.99 ± 0.05 10−3 Amsler (1993b)‡
KSKL 7.6 ± 0.4 10−4 Armenteros and French (1969)
KSKL 9.0 ± 0.6 10−4 Amsler (1995c)‡
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Figure 7: π0γ momentum distribution in pp → 4π0γ (4 entries/event). The peak is due to
pp→ ωη. The inset shows the ω-region and a fit (Gaussian and polynomial background).

with minimum bias data (Eq. (3)). For completeness we also include in Table 2 the branching
ratios for annihilation into two charged light mesons.

Signals for ωπ0 and ωη have also been observed for ω decaying to π+π−π0, leading to π+π−4γ
(Schmid, 1991). Figure 8 shows the π+π−π0 invariant mass spectrum for π+π−π0η events. The
branching ratio for ωπ0 and ωη are in excellent agreement with the ones from 0-prong (Table
2).

The angular distribution in the ω rest frame contains information on the initial atomic state.
The distribution of the angle between the normal to the plane spanned by the three pions and
the direction of the recoiling η is plotted in the inset of Fig. 8. Using the method described in
section 7.2 one predicts the distribution sin2θ for annihilation from 3S1 while the distribution
should be isotropic for annihilation from 1P1. The fit (curve) allows (12 ± 4)% P-wave. Figure
9 shows the angular distribution of the γ in the ω rest frame for ωη(ω → π0γ). The predicted
distribution is (1 + cos2 θ) from 3S1 and is again isotropic for 1P1. The fit (curve) allows (9
± 3)% P-wave. However, these results assume that the relative angular momentum between
η and ω is L = 0 from 1P1, thus neglecting L = 2. Without this assumption, the fraction of
P-wave cannot be determined from the angular distributions due to the unknown interference
between the L = 0 and L = 2 amplitudes.

Some of the branching ratios for two-neutral mesons have been measured earlier (Adiels,
1989; Chiba, 1988) by detecting and reconstructing π0’s or η’s with small solid angle detectors
and observing peaks in the π0 or η inclusive momentum spectra. Since the branching ratios are
small, these early data are often statistically weak or subject to uncertainties in the baseline
subtraction from the inclusive spectra. In fact most of the Crystal Barrel results disagree with
these measurements which should not be used anymore. Table 2 therefore updates Table 1 in
Amsler and Myhrer (1991).
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Figure 8: π+π−π0 invariant mass distribution for π+π−π0η events. The peak is due to pp→ ωη.
The inset shows the background subtracted angular distribution in the ω-rest frame (see text).
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Figure 9: γ angular distribution in the ω rest frame for ωη(ω → π0γ) (see text).
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4.2 Test of the Quark-Line Rule

We now compare the measured two-meson branching ratios in Table 2 with predictions from
the QLR. The flavor content of the η and η′ mesons is given by

|η〉 =
1√
2

(|uu〉+ |dd〉) sin(θi − θp)− |ss〉 cos(θi − θp),

|η′〉 =
1√
2

(|uu〉+ |dd〉) cos(θi − θp) + |ss〉 sin(θi − θp), (21)

where θi = 35.3◦ is the ideal mixing angle. The flavor wave functions of the π0 and ρ0 are

|π0〉, |ρ0〉 =
1√
2

(|dd〉 − |uu〉), (22)

and those of ω and φ, assuming ideal mixing in the vector nonet,

|ω〉 =
1√
2

(|uu〉+ |dd〉), |φ〉 = −|ss〉. (23)

The branching ratio for annihilation into two neutral mesons is then given by B = B̃ ·W with

B̃ = |〈pp|T |M1M2〉|2 = |
∑
i,j

T ([qiqi]1, [qjqj]2)〈qiqi|M1〉〈qjqj|M2〉|2, (24)

and 4 qi = u or d (Genz, 1985). In the absence of ss pairs in the nucleon, the QLR forbids the
production of ss mesons and therefore the ss components in M1 and M2 can be ignored in Eq.
(24). The predicted ratios of branching ratios are given by the first four rows in Table 3 for
various channels from the same atomic states. They depend only on the pseudoscalar mixing
angle θp. To extract θp the measured branching ratios from Table 2 must be first divided by
W (Eq. (13)), ignoring C0 and Cab which cancel in the ratio.

The pseudoscalar mixing angle has been measured in various meson decays (e.g. η and η′

radiative decays, J/ψ radiative decays to η and η′) and is known to be close to -20◦ (Gilman
and Kauffmann, 1987). The agreement with our simple model of annihilation is amazing (third
column of Table 3). We emphasize that the predictions in the upper four rows of Table 3 are
valid independently of the relative contributions from the A and R graphs.

Conversely, one can assume the validity of the model and extract from the first four rows
in Table 3 the average

θp = (−19.4± 0.9)◦. (25)

Leaving the constant A in Eq. (13) as a free fit parameter one obtains θp = (−17.3 ± 1.8)◦

from early Crystal Barrel data (Amsler, 1992b). This result is in excellent agreement with a
reanalysis (Bramon, 1997) of J/ψ decay into a vector and a pseudoscalar: θp = (−16.9± 1.7)◦.
Assuming now dominance of the planar graph A, the amplitudes T ([uu]1, [dd]2) and T ([dd]1,
[uu]2) vanish and one obtains the predictions in the lower part of Table 3. The measurements
lead in general to incorrect values for θp, presumably due to the contribution of the R graph.
Also, for ρ0ρ0 and ωω one expects from A dominance

B̃(ρ0ρ0) = B̃(ωω), (26)

4The theoretical prediction B̃ has to be multiplied by two for a pair of non-identical mesons.
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Table 3: Pseudoscalar mixing angle θp derived from the measured ratios of two-body branching
ratios (θi = 35.3◦). The first four rows assume only the QLR in the annihilation process. The
last six rows assume in addition the dominance of the annihilation graph A.

Ratio Prediction θp [◦]
B̃(π0η)

B̃(π0η′)
tan2(θi − θp) -18.1 ± 1.6

B̃(ηη)

B̃(ηη′)
1
2

tan2(θi − θp) -17.7 ± 1.9
B̃(ωη)

B̃(ωη′)
tan2(θi − θp) -21.1 ± 1.5

B̃(ηρ0)

B̃(η′ρ0)
tan2(θi − θp) -25.4 +

−
5.0
2.9

B̃(ηρ0)

B̃(ωπ0)
sin2(θi − θp) -11.9 ± 3.2

B̃(η′ρ0)

B̃(ωπ0)
cos2(θi − θp) -30.5 ± 3.5

B̃(ηη)

B̃(π0π0)
sin4(θi − θp) -6.2 +

−
0.6
1.1

B̃(ηη′)
B̃(π0π0)

2 sin2(θi − θp) 14.6 ± 1.8

× cos2(θi − θp) or -34.0 ± 1.8
B̃(ωη)

B̃(π0ρ0)
sin2(θi − θp) -23.7 +

−
7.6
8.9

B̃(ωη′)
B̃(π0ρ0)

cos2(θi − θp) -20.1 ± 3.7

in violent disagreement with data (Table 2). On the other hand, if R dominates the amplitude
T ([dd]1, [dd]2) vanishes and one predicts from Eq. (24) with a2 ≡ sin2(θi − θp) the inequality
(Genz, 1990)

|a2
√

2B̃(π0π0)−
√

2B̃(ηη)|2 ≤ 4a2B̃(π0η) ≤ |a2
√

2B̃(π0π0) +
√

2B̃(ηη)|2, (27)

which is fulfilled by data.
There is, however, a caveat: the predictions (24) have been compared to the measured

branching ratios corrected by W . As pointed out earlier, Eq. (13) provides a good fit to the
mutiplicity distribution in low energy pp annihilation as a function of p momentum. Other
correcting factors can, however, be found in the literature. In section 7 we shall use the phase
space factor

W = pF 2
L(p) (28)

where FL(p) is the Blatt-Weisskopf damping factor which suppresses high angular momenta L
for small p. This factor is determined by the range of the interaction, usually chosen as 1 fm
(pR =197 MeV/c). Convenient expressions for FL(p) are given in Table 4. For p much larger
than pR, FL(p) ' 1 and for p much smaller than pR

FL(p) ' pL. (29)

This last prescription provides a reasonable agreement when comparing the measured decay
branching ratios of mesons, especially tensors, with predictions from SU(3), as we shall discuss
in section 10.1. These alternative phase space factors may also be used to determine the
pseudoscalar mixing angle. However, they do not lead to consistent values for θp (Amsler,
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Table 4: Damping factors FL(p) where z stands for (p/pR)2 and pR is usually taken as 197
MeV/c (after Hippel and Quigg (1972)).

L FL(p)
0 1

1
√

2z
z+1

2
√

13z2

(z−3)2+9z

3
√

277z3

z(z−15)2+9(2z−5)2

4
√

12,746z4

(z2−45z+105)2+25z(2z−21)2

1992b). Agreement is achieved with prescription (13), which we shall also employ in the next
section.

In conclusion, the naive quark model assuming only the QLR and two-body threshold
dominance reproduces the correct pseudoscalar mixing angle from the measured two-meson
final states. This is a clear indication for quark dynamics in the annihilation process. The
relative contribution from R and A cannot be extracted but the non-planar graph R must
contribute substantially to the annihilation process.

5 Electromagnetic Processes

We now turn to annihilation channels involving the electromagnetic interaction. The direct
emission of photons is expected to occur from quark-antiquark pairs annihilating in the 3S1(qq)
state. The rates for these processes can be compared with predictions from the Vector Dom-
inance Model (VDM) (section 5.1). The main contribution to annihilation final states with
unpaired photons stems from radiative decay of intermediate mesons, the rate of which can be
compared with SU(3) predictions (sections 5.2 and 5.3). The search for monochromatic photons
may lead to the observation of new bosons (section 5.4). Proton-antiproton annihilation is also
a copious source of η mesons and the η → 3π decay may be studied to test current ideas on
chiral perturbation (section 5.5).

5.1 Radiative annihilation

p γ

p X

I=0 (1) ρ0

+     exp (iβ)1
3

I=1 (0)

X

ω
22

=

X

Figure 10: Following VDM, radiative annihilation can be described by a superposition of two
isospin amplitudes with unknown relative phase β. X stands for any neutral meson.
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Radiative annihilation pp → γX, where X stands for any neutral meson, involves the
annihilation of a qq pair into a photon. The branching ratios can be calculated from VDM
which relates γ emission to the emission of ρ, ω and φ mesons (Delcourt, 1984). Assuming
ideal mixing in the vector nonet one may actually neglect φ production which is forbidden by
the QLR. The isospin I = 0 and 1 amplitudes from the same pp atomic state interfere since
isospin is not conserved in electromagnetic processes. The amplitude for pp→ γX is then given
by the coherent sum of the two I = 0 and I = 1 amplitudes with unknown relative phase β
(fig. 10). According to VDM, the γρ coupling gργ is a factor of three stronger than the γω
coupling. The branching ratio is then5

B̃(γX) = A2[B̃(ρX) +
1

9
B̃(ωX) +

2

3

√
B̃(ρX)B̃(ωX) cos β], (30)

with
A =

egργ
m2
ρ

= 0.055. (31)

Equation (30) provides lower and upper limits (cosβ = ± 1) for branching ratios.
Radiative annihilation has not been observed so far with the exception of π0γ (Adiels, 1987).

Crystal Barrel has measured the rates for π0γ, ηγ, ωγ and has obtained upper limits for η′γ
and γγ (Amsler, 1993c). Annihilation into φγ (Amsler, 1995c) is treated in section 6.1.
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Figure 11: Energy deposits in the barrel versus polar angle Θ and azimuthal angle Φ for a π0γ
event. The two γ’s from π0 decay cluster near the minimum opening angle (16.5◦).

The starting data sample consisted of 4.5×106 0-prong events. Figure 11 shows a typical π0γ
event leading to three detected photons. The main background to π0γ stems from annihilations
into π0π0 for which one of the photons from π0 decay has not been detected, mainly because its
energy lies below detection threshold (10 MeV). The π0 momentum for π0γ is slightly higher (5
MeV/c) than for π0π0. The small downward shift of the π0 momentum peak due to the π0π0

5For two identical particles, e.g. ρ0ρ0 or ωω, the measured branching ratios divided by phase space, B̃, have
to be multiplied by two.
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contamination could be observed thanks to the good energy resolution of the detector and could
be used to estimate the feedthrough from π0π0: (29 ± 8) %, in agreement with Monte Carlo
simulations. The result for the π0γ branching ratio is given in Table 5. It disagrees with the
one obtained earlier from the π0 inclusive momentum spectrum: (1.74 ±0.22) × 10−5 (Adiels,
1987).

Table 5: Branching ratios B for radiative pp annihilation at rest in liquid from Crystal Barrel
(Amsler, 1993c, 1995c). The lower and upper limits L and U , calculated from VDM, are given
in the third and fourth column, respectively.
† 95% confidence upper limit.

Channel B L U
π0γ 4.4 ± 0.4 ×10−5 3.1× 10−5 6.8× 10−5

ηγ 9.3 ± 1.4 ×10−6 1.0× 10−6 2.5× 10−5

ωγ 6.8 ± 1.8 ×10−5 8.5× 10−6 1.1× 10−4

η′γ < 1.2 ×10−5† 2.7× 10−7 10−5

γγ < 6.3 ×10−7†
φγ 2.0 ± 0.4 ×10−5 2.1× 10−7 1.5× 10−6

Results for ηγ, ωγ and η′γ are also given in Table 5. The ω was detected in its π0γ and
the η′ searched for in its 2γ decay mode. The main contaminants were ηπ0, ωπ0 and η′π0,
respectively, with one photon escaping detection. For pp→ γγ, 98 ± 10 events were observed
of which 70 ± 8 were expected feedthrough from π0γ and π0π0. This corresponds to a branching
ratio of (3.3 ±1.5)× 10−7 which the collaboration prefers to quote as an upper limit (Table 5).

The branching ratios, divided by W (Eq. (13)), are compared in Table 5 with the range
allowed by Eq. (30). Apart from φγ to which we shall return later, the results agree with
predictions from VDM. For π0γ and ηγ (from 3S1) the isospin amplitudes interfere destructively
(cosβ ∼ -0.3) while for ωγ (from 1S0) they interfere constructively (cosβ ∼ 0.13). We emphasize
that these conclusions depend on the prescription for the phase space correction. With a phase
space factor of the form p3 one finds strongly destructive amplitudes (Amsler, 1993c), see also
Locher (1994) and Markushin (1997).

No prediction can be made from VDM for γγ due to the contribution of three amplitudes
with unknown relative phases: ρ0ω from I = 1, ρ0ρ0 and ωω from I = 0. Also, the branching
ratio for ρ0ρ0 is poorly known (Table 2).

5.2 Radiative ω decays

The rates for radiative meson decays can be calculated from the naive quark model using
SU(3) and the OZI rule (O′Donnell, 1981). Assuming ideal mixing in the vector nonet one
finds, neglecting the small difference between u and d quark masses:

B(ω → ηγ)

B(ω → π0γ)
=

1

9

p3
η

p3
π0

cos2(54.7◦ + θp) = 0.010, (32)

where pπ = 379 MeV/c and pη = 199 MeV/c are the decay momenta in the ω rest frame and θp
is the pseudoscalar mixing angle (Amsler, 1992b). However, the production and decay of the ω
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Figure 12: (a) ω → 3γ Dalitz plot for π0ω events (62,853 events, 6 entries/event); (b) ω → 3γ
Dalitz plot for ηω events (54,865 events, 6 entries/event).

and ρ mesons are coupled by the isospin breaking ω to ρ transition since these mesons overlap
(for references on ρ − ω mixing, see O′Connell (1995)). Since the width of ρ is much larger
than the width of ω, the effect of ρ − ω mixing is essential in processes where ρ production is
larger than ω production, for example in e+e− annihilation where ω and ρ are produced with
a relative rate of 1/9. The determination of the branching ratio for ω → ηγ varies by a factor
of five depending on whether the interference between ω → ηγ and ρ0 → ηγ is constructive or
destructive (Dolinsky, 1989). A similar effect is observed in photoproduction (Andrews, 1977).
The GAMS collaboration has determined the ω → ηγ decay branching ratio, (8.3±2.1)×10−4,
using the reaction π−p → ωn at large momentum transfers, thus suppressing ρ production
(Alde, 1994).

In pp annihilation at rest the branching ratio for π0ω is much smaller than the branching
ratio for π0ρ0 while the converse is true for ηω and ηρ0 (Table 2). We therefore expect that a
determination of the ω → ηγ branching ratio from π0ω, neglecting ρ− ω mixing, will lead to a
larger value than from ηω. However, a simultaneous analysis of both branching ratios, including
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ρ− ω mixing, should lead to consistent results and allow a determination of the relative phase
between the two amplitudes.

In Abele (1997d) the channels π0ω and ηω (ω → ηγ) were reconstructed from 15.5 million
0-prong events with five detected γ’s. The events were submitted to a 6C kinematic fit assuming
total energy and total momentum conservation, at least one π0 → 2γ (or one η → 2γ) and
ω → 3γ. The ω → 3γ Dalitz plots for π0ω and ηω are shown in Fig. 12, using the variables

x =
T2 − T1√

3Q
, y =

T3

Q
− 1

3
, (33)

where T1, T2 and T3 are the kinetic energies of the γ’s in the ω rest frame and Q = T1 +T2 +T3.
The prominent bands along the boundaries are due to ω → π0γ and the weaker bands around
the center to ω → ηγ.

The main background contributions arose from 6γ events (pp → 3π0, 2π0η, 2ηπ0) with a
missing photon. This background (10% in the π0ω and 5% in the ηω Dalitz plots) was simu-
lated using the 3- pseudoscalar distributions discussed in section 8 and could be reduced with
appropriate cuts (Pietra, 1996). After removal of the π0 bands 147 ± 25 ω → ηγ events were
found in the η bands of Fig. 12(a) and 123 ± 19 events in the η bands of Fig. 12(b).

The branching ratio for ω → ηγ was derived by normalizing on the known branching ratio
for ω → π0γ, (8.5± 0.5) % (Barnett, 1996). Correcting for the reconstruction efficiency Abele
(1997d) finds a branching ratio of (13.1± 2.4)× 10−4 from π0ω and (6.5± 1.1)× 10−4 from ηω,
hence a much larger signal from π0ω.

Consider now the isospin breaking electromagnetic ρ − ω transition. The amplitude S for
the reaction pp→ X(ρ− ω)→ Xηγ is, up to an arbitrary phase factor (Goldhaber, 1969):

S =
|Aρ||Tρ|
Pρ

(
1− |Aω||Aρ|

eiαδ

Pω

)

+ ei(α+φ) |Aω||Tω|
Pω

(
1− |Aρ||Aω|

e−iαδ

Pρ

)
, (34)

where A is the production and T the decay amplitude of the two mesons and Pρ ≡ m−mρ +
iΓρ/2, Pω ≡ m−mω + iΓω/2. The parameter δ was determined from ω, ρ→ π+π−: δ = (2.48
± 0.17) MeV (Weidenauer, 1993). The relative phase between the production amplitudes Aρ
and Aω is α while the relative phase between the decay amplitudes Tρ and Tω is φ. In the
absence of ρ− ω interference (δ = 0) Eq. (34) reduces to a sum of two Breit-Wigner functions
with relative phase α+ φ. The magnitudes of the amplitudes A and T are proportional to the
production branching ratios and the partial decay widths, respectively.

The production phase α can be determined from ρ, ω → π+π− since the isospin violating
decay amplitude T (ω → π+π−) may be neglected, leaving only the first term in Eq. (34).
A value for α consistent with zero, (−5.4 ± 4.3)◦, was measured by Crystal Barrel, using the
channel pp→ ηπ+π− where ρ−ω interference is observed directly (Abele, 1997a). This phase is
indeed predicted to be zero in e+e− annihilation, in photoproduction and also in pp annihilation
(Achasov and Shestakov, 1978).

With the branching ratios for ωπ0, ωη, π0ρ0 and ηρ0 given in Table 2 the intensity |S|2 was
fitted to the number of observed ω → ηγ events in ωπ0 and ωη, using Monte Carlo simulation.
Both channels lead to consistent results for

B(ω → ηγ) = (6.6± 1.7)× 10−4, (35)
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in agreement with the branching ratio from ηω, obtained by neglecting ρ−ω interference. The
phase φ = (−20+70

−50)◦ leads to constructive interference. The result Eq. (35) is in excellent
agreement with Alde (1994) and with the constructive interference solution in e+e−, (7.3 ±
2.9)× 10−4 (Dolinsky, 1989). This then solves the longstanding ambiguity in e+e− annihilation
between the constructive (φ = 0) and destructive (φ = π) interference solutions. The branching
ratio for ρ0 → ηγ, (12.2 ± 10.6) × 10−4, is not competitive but agrees with results from e+e−,
(3.8±0.7)×10−4 for constructive interference (Dolinsky, 1989; Andrews, 1977). Using Eq. (32)
one then finds

B(ω → ηγ)

B(ω → π0γ)
= (7.8± 2.1)× 10−3, (36)

in agreement with SU(3).
The ω → 3γ Dalitz plot is also useful to search for the direct process ω → 3γ which is

similar to the decay of (3S1) orthopositronium into 3γ and has not been observed so far. By
analogy, the population in the ω → 3γ Dalitz plot is expected to be almost homogeneous
except for a slight increase close to its boundaries (Ore and Powell, 1949). Using the central
region in Fig. 12(a) which contains only one event (6 entries) one obtains the upper limit
B(ω → 3γ) = 1.9 × 10−4 at 95% confidence level. This is somewhat more precise that the
previous upper limit, 2× 10−4 at 90% confidence level (Prokoshkin and Samoilenko, 1995).

5.3 η′ → π+π−γ

The π+π−γ decay mode of the η′ is generally believed to proceed through the ρ(770)γ inter-
mediate state (Barnett, 1996). However, the ρ mass extracted from a fit to the π+π− mass
spectrum appears to lie some 20 MeV higher than for ρ production in e+e− annihilations. This
effect is due to the contribution of the direct decay into π+π−γ (Bityukov, 1991) through the
so-called box anomaly (Benayoun, 1993). Crystal Barrel has studied the η′ → π+π−γ channel
where the η′ is produced from the annihilation channels π0π0η′, π+π−η′ and ωη′ (Abele, 1997i).
Evidence for the direct decay was confirmed at the 4σ level by fitting the π+π− mass spectrum
from a sample of 7,392 η′ decays. Including contributions from the box anomaly, the ρ mass
turns out to be consistent with the standard value from e+e− annihilation. Using the known
two-photon decay widths of η and η′ and the η → π+π−γ decay spectrum from Layter (1973)
the collaboration derived the pseudoscalar nonet parameters fπ/f1=0.91 ± 0.02, f8/fπ=0.90
± 0.05. This result is in accord with nonet symmetry (f1 = f8). The pseudoscalar mixing
angle θp = (−16.44± 1.20)◦ agrees with the Crystal Barrel result θp = (−17.3± 1.8)◦ (Amsler,
1992b).

5.4 Search for light gauge bosons in pseudoscalar meson decays

Extensions of the standard model allow additional gauge bosons, some of which could be light
enough to be produced in the decay of pseudoscalar mesons (Dobroliubov and Ignatiev, 1988).
Radiative decays π0, η, η′ → γX are particularly suitable since they are only sensitive to gauge
bosons X with quantum numbers JP = 1−. Branching ratios are predicted to lie in the range
10−7 to 10−3 (Dobroliubov, 1990). Experimental upper limits for π0 → γX are of the order
5× 10−4 for long lived gauge bosons with lifetime τ > 10−7 s (Atiya, 1992). Short lived gauge
bosons decaying subsequently to e+e− are not observed with an upper limit of 4× 10−6 (Meijer
Drees, 1992).
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Crystal Barrel has searched for radiative decays where X is a long lived weakly interacting
gauge boson escaping from the detector without interaction, or decaying to νν. The search
was performed using the reactions pp→ 3π0, π0π0η and π0π0η′ at rest (Amsler, 1994a, 1996a)
which occur with a sufficiently high probability (see Table 9 below) and are kinematically well
constrained. Events with five photons were selected from a sample of 15 million annihilations
into neutral final states (18 million for η′ decays). Since the branching ratio for 0-prong annihi-
lation is about 4%, the data sample corresponds to some 400 million pp annihilations in liquid
hydrogen.
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Figure 13: Energy distribution (24,503 events) of the single γ in the missing π0 rest frame for
events satisfying the kinematics pp → 2π0 and a missing π0. The full line is a fit. The dotted
curve shows the expected signal for a branching ratio of 5× 10−4.

Events consistent with π0π0 decays and a single (unpaired) γ were then selected by requiring
energy and momentum conservation for pp annihilation into π0π0π0, π0π0η or π0π0η′ with a
missing π0, η or η′. Thus 3C kinematic fits were applied, ignoring the remaining fifth photon.
The measured energy of the latter was then transformed into the rest frame of the missing
pseudoscalar. In this frame a missing state X with mass mX would produce a peak in the
γ-energy distribution at

E∗γ =
m

2

(
1− m2

X

m2

)
, (37)

with width determined by the experimental resolution, where m is the mass of the missing
pseudoscalar. Thus, if X is simply a missing (undetected) γ from π0, η or η′ decay, one finds
with mX = 0 that E∗γ = m/2, as expected.

The main source of background is annihilation into three pseudoscalars for which one of
the photons escaped detection. This occurs for (i) photons with energies below detection
threshold (E < 20 MeV) or (ii) for photons emitted into insensitive areas of the detector.
The latter background can be reduced by rejecting events for which the missing γ could have
been emitted e.g. in the holes along the beam pipe. The high efficiency and large angular
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coverage of the Crystal Barrel are therefore crucial in this analysis. For the 3π0 channel an
important background also arose from pp→ π0ω with ω → π0γ, leading to 5γ. This background
could be reduced by rejecting events which satisfy the π0ω(→ π0γ) kinematics. For π0π0η,
the background channel KS(→ 2π0)KL with an interacting KL faking a missing η could be
eliminated with appropriate kinematic cuts.

The E∗γ-energy distribution for π0 decay is shown in Fig. 13. The broad peak around
70 MeV is due to π0 decays into 2γ where one γ has escaped detection, or from residual π0ω
events. The fit to the distribution (full line) agrees with the simulated rate of background from
3π0 and π0ω. The dotted line shows the expected signal for a state with mass mX = 120 MeV,
produced in π0 decay with a branching ratio of 5× 10−4. The corresponding distributions for
η and η′ decays can be found in Amsler (1996a).
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Figure 14: 90 % confidence level upper limits for radiative pseudoscalar decays as a function of
missing mass.

Upper limits for radiative decays are given in Fig. 14 as a function of mX . The upper limit
for π0 decay is an order of magnitude lower than from previous experiments (Atiya, 1992).
For η and η′ decays no limits were available previously. Light gauge bosons are therefore not
observed in radiative pseudoscalar decays at a level of 10−4 to 10−5.

5.5 η → 3π

The 3π decay of the η plays an important role in testing low energy QCD predictions. This
isospin breaking decay is mainly due to the mass difference between u and d quarks. Crystal
Barrel has measured the relative branching ratios for η → π+π−π0, η → 3π0 and η → 2γ from
samples of annihilations into 2π+2π−π0, π+π−3π0 and π+π−2γ, respectively (Amsler, 1995d).
The ratios of partial widths are

r1 ≡
Γ(η → 3π0)

Γ(η → π+π−π0)
= 1.44± 0.13,

r2 ≡
Γ(η → 2γ)

Γ(η → π+π−π0)
= 1.78± 0.16. (38)

The result for r1 is in good agreement with chiral perturbation theory: 1.43 ± 0.03 (Gasser
and Leutwyler, 1985) and 1.40 ± 0.03 when taking unitarity corrections into account (Kambor,

28



   

1996). With the known 2γ partial width (Barnett, 1996) one can calculate from r2 the partial
width Γ(π+π−π0) = 258± 32 eV, in accord with chiral perturbation theory (Γ = 230 eV), taking
into account corrections to the u−d mass difference (Donoghue, 1992). In good approximation,
the η → π+π−π0 Dalitz plot may be described by the matrix element squared

|M(x, y)|2 ∝ 1 + ay + by2 (39)

with

y ≡ 3T0

m(η)−m(π0)− 2m(π±)
− 1, (40)

where T0 is the kinetic energy of the neutral pion. The parameters a and b were determined
in Amsler (1995d), but more accurate values are now available from the annihilation channel
pp→ π0π0η. Abele (1997b) finds

a = −1.19± 0.07, b = 0.19± 0.11, (41)

in reasonable agreement with chiral perturbation calculations which predict a = -1.3 and b =
0.38 (Gasser and Leutwyler, 1985).

0.4 0.6 0.8 1.00 0.2
0.7

0.8

0.9

1.0

1.1

|
M

|
2

z 

Figure 15: Squared matrix element for η → 3π0. The straight line shows the fit according to
Eq. (42).

The matrix element for η decay to 3π0 is directly connected to the matrix element for the
charged mode because 3π0 is an I = 1 state. The matrix element squared for η decay to 3π0 is
given by

|M(z)|2 = 1 + 2αz, (42)

where z is the distance from the center of the η → 3π0 Dalitz plot,

z =
2

3

3∑
i=1

[
3Ei −m(η)

m(η)− 3m(π0)

]2

, (43)
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and where Ei are the total energies of the pions. Experiments have so far reported values for
α compatible with zero, e.g. Alde (1984) finds −0.022± 0.023.

Crystal Barrel has analyzed the 3π0 Dalitz plot with 98,000 η decays from the annihilation
channel π0π0η, leading to 10 detected photons (Abele, 1997c). The background and acceptance
corrected matrix element is shown in Fig. 15 as a function of z. The slope is

α = −0.052± 0.020. (44)

Chiral perturbation theory up to next-to-leading order predict α to be zero (Gasser and
Leutwyler, 1985) leading to a homogeneously populated Dalitz plot. Taking unitarity cor-
rections into account, Kambor (1996) predicts a negative value α = −0.014. The Crystal
Barrel result is somewhat at variance with the value advocated by theory. Given the large
experimental error, a more accurate value would be useful to also measure the quark masses.
Unlike a and b in Eq. (41), the slope α provides a rather sensitive probe of chiral perturbation
theory (Wyler, 1998).

6 Production of φ Mesons

It has been known for some time that φ production is enhanced beyond expectation from the
OZI rule in various hadronic reactions (Cooper, 1978). Let us return to Eq. (21) and replace η
by φ and η′ by ω. The mixing angle becomes the mixing angle θv in the vector nonet. According
to the OZI rule, φ and ω can only be produced through their uu + dd components. Hence φ
production should vanish for an ideally mixed vector nonet (θv = θi) in which φ is purely ss.
Since φ also decays to 3π this is not quite the case and we find for the ratio of branching ratios
with a recoiling meson X and apart from phase space corrections,

R̃X =
B̃(Xφ)

B̃(Xω)
= tan2(θi − θv) = 4.2× 10−3 or 1.5× 10−4, (45)

for the quadratic (θv = 39◦) or linear (θv = 36◦) Gell-Mann-Okubo mass formula (Barnett,
1996).

The branching ratios for pn annihilation into π−φ and π−ω have been measured in deuterium
bubble chambers. The ratio R̃π− lies in the range 0.07 to 0.22 indicating a strong violation
of the OZI rule (for a review, see Dover and Fishbane (1989)). The Asterix experiment at
LEAR has measured φ production in pp annihilation into π0φ, ηφ, ρ0φ and ωφ in gaseous
hydrogen at NTP (50% P-wave annihilation) and in coincidence with atomic L X-rays (P-wave
annihilation). The branching ratios for pure S-wave were then obtained indirectly by linear
extrapolation (Reifenröther, 1991). With the corresponding ω branching ratios, then available
from literature, the authors reported a strong violation of the OZI rule, especially for π0φ. Some
of the branching ratios from Crystal Barrel are, however, in disagreement with previous results.
We shall therefore review the direct measurement of φ production in liquid from Crystal Barrel
and then reexamine the evidence for OZI violation with the two-body branching ratios listed
in Table 2.

6.1 Annihilation into π0φ, ηφ and γφ

Crystal Barrel has studied the channels

pp→ KSKLπ
0 and KSKLη, (46)
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where KS decays to π0π0 and η to γγ, leading to six photons and a missing (undetected)
KL (Amsler, 1993d). The starting data sample consisted of 4.5 × 106 0-prong annihilations.
By imposing energy and momentum conservation, the masses of the three reconstructed pseu-
doscalars and the KS mass, a (5C) kinematic fit was applied leading to 2,834 KSKLπ

0 and 72
KSKLη events with an estimated background of 4%, respectively 36%.
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Figure 16: Dalitz plot of the final state KSKLπ
0 (2,834 events).

The KSKLπ
0 Dalitz plot is shown in Fig. 16. One observes the production of K∗(892)

(→ Kπ) and φ(→ KSKL). A Dalitz plot analysis was performed with the method described
in section 7.2. Since the C-parity of KSKL is negative6 the contributing initial atomic S-state
is 3S1. One obtains a good fit to the Dalitz plot with only two amplitudes, one for K∗K (and
its charge conjugated KK

∗
which interferes constructively) and one for π0φ with a relative

contribution to the KSKLπ
0 channel of

K∗K +KK
∗

π0φ
= 2.04± 0.21. (47)

The final state KSKLη is much simpler since only ηφ contributes (Amsler, 1993d). One
obtains by comparing the intensities for π0φ and ηφ

B(π0φ)

B(ηφ)
= 8.3± 2.1, (48)

taking into account the unobserved decay modes of the η meson.
Events with a KL interacting in the CsI crystals have been removed by the selection pro-

cedure which required exactly six clusters in the barrel. The last two results therefore assume
that the interaction probability for KL in CsI does not vary significantly with KL momentum.

6Note that K0K0 recoiling against π0 appears as KSKS +KLKL (JPC = even ++) from 1S0 and as KSKL

(JPC = odd−−) from 3S1.
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Therefore, this interaction probability needs to be determined to derive absolute branching
ratios for π0φ and ηφ. This number cannot be obtained directly by Monte Carlo simulation
due to the lack of data for low energy KL interacting with nuclear matter. With monoenergetic
(795 MeV/c) KL from the channel pp→ KSKL, Amsler (1995c) finds an interaction probability
of (57 ± 3) % in the CsI barrel. This leads to a branching ratio of (9.0 ± 0.6) ×10−4 for KSKL,
in agreement with bubble chamber data (Table 2).

An average interaction probability of (54 ± 4)% was measured with the kinematically
well constrained annihilation channel KS(→ π+π−)KLπ

0 (Abele, 1998b). However, in Am-
sler (1995c) a somewhat lower probability was used. Updating their π0φ branching ratio one
finds together with their compatible result from π0(φ→ K+K−):

B(pp→ π0φ) = (6.5± 0.6)× 10−4. (49)

From Eq. (48) one then obtains

B(pp→ ηφ) = (7.8± 2.1)× 10−5. (50)

Both numbers are slightly higher than from indirect data in gaseous hydrogen which were
extrapolated to pure S-wave annihilation (Reifenröther, 1991), see Table 6.

Table 6: Branching ratios for φ production at rest in liquid.
a updates Amsler (1995c)
b annihilation in gas extrapolated to pure S-wave annihilation
d using Chiba (1988) in liquid
d using Bizzarri (1971) in liquid
‡ Crystal Barrel experiment

Channel B Reference
π0φ 6.5 ± 0.6 10−4 a‡
π0φ 3.0 ± 1.5 10−4 Chiba (1988)
π0φ 4.0 ± 0.8 10−4 Reifenröther (1991)bc

ηφ 7.8 ± 2.1 10−5 Amsler (1995c)‡
ηφ 3.0 ± 3.9 10−5 Reifenröther (1991)b

ωφ 6.3 ± 2.3 10−4 Bizzarri (1971)
ωφ 5.3 ± 2.2 10−4 Reifenröther (1991)bd

ρ0φ 3.4 ± 1.0 10−4 Reifenröther (1991)b

γφ 2.0 ± 0.4 10−5 a‡

Radiative annihilation into φ mesons should be suppressed by both the OZI rule and the
electromagnetic coupling. Crystal Barrel has studied the channel γφ with the reactions

pp→ KSKLγ and K+K−γ, (51)

(Amsler, 1995c). In the first reaction KS decays to π0π0, KL is not detected and thus the
final state consists of five photons. The KSKLγ final state was selected from 8.7× 106 0-prong
annihilations by performing a 4C fit, imposing energy and momentum conservation, the masses
of the two pions and the KS mass. The background reaction pp → KSKL with an interacting
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KL faking the fifth photon could easily be suppressed since KL and KS are emitted back-to-
back. The experimental KSKLγ Dalitz plot is dominated by background from KSKLπ

0 with
a missing (undetected) low energy γ from π0 decay and is therefore similar to the one shown
in Fig. 16. The background contribution to γφ, mainly from π0φ with a missing photon, was
estimated by Monte Carlo simulation and by varying the photon detection threshold. This led
to 211 ± 41 γφ events corresponding to a branching ratio B(γφ) = (2.0 ± 0.5) × 10−5, after
correcting for the (updated) KL interaction probability.

A sample of 1.6× 106 2-prong annihilations was used to select the second reaction in (51).
After a cut on energy and momentum conservation (assuming kaons) the measured ionization
loss in the JDC was used to separate kaons from pions. Again, the dominating background
to γφ arose from π0φ with a missing γ. This background was subtracted by varying the γ
detection threshold and by keeping only γ’s with energies around 661 MeV, as required by two-
body kinematics. The signal of 29 events led to a branching ratio B(γφ) = (1.9± 0.7)× 10−5

which is less precise but in good agreement with data from the neutral mode. The average is
then

B(pp→ φγ) = (2.0± 0.4)× 10−5, (52)

which updates the result from Amsler (1995c).

6.2 φ/ω ratio

Table 7 and Fig. 17 show the phase space corrected ratios R̃X (Eq. (45)). The nearest threshold
dominance factors (Eq. (13)) have been used but the measured ratios do not differ significantly
from R̃X . Phase space factors of the type (28) lead to even larger ratios. For X = γ, π0, η we
used Crystal Barrel data. For X = ω we used for ωω the branching ratio from Crystal Barrel
(multiplied by two for identical particles) and for ωφ the branching ratio from Bizzarri (1971)
(Table 2). For completeness we also list the result for X = ρ from Reifenröther (1991) and
Bizzarri (1969) and the recent Obelix data for Rπ− (Ableev, 1995) and Rπ+ (Ableev, 1994) in
pn and np annihilation.

Table 7: Ratio of φ to ω production in low energy annihilation in liquid.

X R̃X [10−2]
γ 29.4 ± 9.7
π0 10.6 ± 1.2
η 0.46 ± 0.13
ω 1.02 ± 0.39
ρ0 1.57 ± 0.49
π− 13.0 ± 2.5
π+ 10.8 ± 1.5
σ 1.75 ± 0.25
π+π− 1.65 ± 0.35

Annihilation into ωπ0π0 and φ(→ KLKS)π0π0 can be used to extract the ratio R̃σ (Spanier,
1997), where σ stands for the low energy (ππ) S-wave up to 900 MeV (section 8.4). Finally,
the ratio Rπ+π− was also measured in pp at rest (Bertin, 1996). Table 7 and Fig. 17 show their
result for π+π− masses between 300 and 500 MeV.
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Figure 17: Ratio of φ to ω production in low energy annihilation. The measured branching
ratios have been divided by the factor W (Eq. (13)). The expectation from the OZI rule using
the quadratic mass formula (4.2× 10−3) is shown by the horizontal line.

The production of φ mesons is enhanced in all channels except ηφ and is especially dramatic
in γφ (from 1S0) and π0φ (from 3S1). Several explanations for this effect have been proposed:

(i) High energy reactions reveal the presence of sea ss pairs in the nucleon at high momentum
transfers but valence ss pairs could enhance the production of φ mesons already at small
momentum transfers. Figure 18 shows the OZI allowed production of ss mesons through the
shake-out mechanism (a) and through the OZI allowed rearrangement process (b) (Ellis, 1995).
The fraction of ss pairs in the nucleon required to explain the measured π0φ rate lies between 1
and 19%. Deep inelastic muon scattering data indicate an ss polarization opposite to the spin
of the nucleon (Ellis, 1995). For annihilation from the 3S1 state the wave function of the (3S1)
ss would match the wave function of the φ in the rearrangement process of Fig. 18(b), leading
to an enhanced production of φ mesons. The absence of enhancement in ηφ could be due to
destructive interference between additional graphs arising from the ss content of η. However,
this model does not explain the large branching ratios for the two-vector channels ρ0φ, ωφ and
especially γφ which proceed from the 1S0 atomic state.

In the tensor nonet, the mainly ss meson is f ′2(1525) and f2(1270) is the mainly uu + dd.
Using annihilation into KLKLπ

0 and 3π0 (section 8) Crystal Barrel has measured the ratio of
f ′2(1525)π0 to f2(1270)π0 from 1S0. After dividing by W (Eq. (13)) one finds with the most
recent branching ratio for f ′2(1525) decay to KK from Barnett (1996), see Table 13 below:

B̃(pp→ f ′2(1525)π0)

B̃(pp→ f2(1270)π0)
= tan2(θi − θt) = (2.6± 1.0)× 10−2. (53)

The mixing angle θt in the 2++ nonet is found to be (26.1+2.0
−1.6)◦, in good agreement with the

linear (26◦) or quadratic (28◦) mass formulae (Barnett, 1996). There is therefore no OZI
violating ss enhancement from f ′2(1525)π0 in liquid hydrogen.

(ii) Dover and Fishbane (1989) suggest that the π0φ enhancement is due to mixing with a
four-quark state (ssqq) with mass below 2mp (Fig. 18(c)). This exotic meson would then have
the quantum numbers of the pp initial state (3S1 = 1−− with I = 1). This would also explain
why ηφ (I = 0) is not enhanced and why π0φ is weak from 1P1 (Reifenröther, 1991). A 1−−
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Figure 18: (a,b): OZI allowed φ production with ss pairs in the nucleon. In (c) an intermediate
four-quark state is excited below threshold. The production of φ mesons can also be enhanced
by final state rescattering, K∗K → πφ or ρρ→ πφ (d).

state, C(1480)→ πφ, has in fact been reported in π−p→ π0φn (Bityukov, 1987). This isovector
cannot be qq since it would decay mostly to πω, which is not observed. Indeed, Crystal Barrel
does not observe any π0ω signal in this mass region in pp → π0π0ω at rest (Amsler, 1993a).
Also, C(1480) has not been observed in pp annihilation at rest into π+π−φ (Reifenröther, 1991)
nor into π0π0φ (Abele, 1997e). In any case the large γφ signal with the “wrong” quantum
numbers 1S0 remains unexplained by this model.

(iii) We have seen (Eq. (47)) that the KKπ final state is dominated by K∗K production
which proceeds dominantly from the I = 1 3S1 state (see section 8.8). The φ enhancement
could then be due to K∗K and ρρ rescattering (Fig.18(d)). In Gortchakov (1996) K∗K and
ρρ interfere constructively to produce a π0φ branching ratio as high as 4.6 × 10−4, nearly
in agreement with experimental data. In Locher (1994) and Markushin (1997) the large γφ
branching ratio simply arises from VDM: The channels ρ0ω and ωω interfere destructively in
Eq. (30) (thereby lowering the branching ratio for γω) while ρ0φ and ωφ interfere constructively
(thus increasing the branching ratio for γφ). This conclusion, however, depends strongly on the
phase space correction: Prescription (13) leads to a γφ branching ratio which exceeds the OZI
prediction by a factor of ten (Table 5). Also, as pointed out by Markushin (1997), the large
ρ0φ and ωφ rates remain unexplained but could perhaps be accommodated within a two-step
mechanism similar to the one shown in Fig. 18(d).

The origin of the φ enhancement is therefore not clear. If I = 1 also dominates pp annihila-
tion into K∗K from P-states in gaseous hydrogen, then the rescattering model would presum-
ably conflict with the weak πφ production observed from 1P1 states (Reifenröther, 1991). With
strange quarks in the nucleon, the 3S1 contribution and hence the contribution from ss pairs in
the nucleon will be diluted by the large number of partial waves at higher p momenta. Hence φ
production should decrease with increasing momentum. Also, the small ηφ rate, possibly due
to destructive interference, implies that η′φ should be abnormally large (Ellis, 1995). Finally,
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since f ′2(1525) is a spin triplet meson one would expect a strong production of f ′2(1525)π0 from
triplet pp states at rest, hence 3P1 (Ellis, 1995). The analysis of Crystal Barrel data in gaseous
hydrogen and in flight will hopefully contribute to a better understanding of the φ enhancement
in hadronic reactions.

7 Meson Spectroscopy

7.1 Introduction

Mesons made of light quarks u, d, s are classified within the qq nonets of SU(3)-flavor. The
ground states (angular momentum L = 0) pseudoscalars (0−+) and vectors (1−−) are well
established. Among the first orbital excitations (L = 1), consisting of the four nonets 0++, 1++,
2++, 1+−, only the tensor (2++) nonet is complete and unambiguous with the well established
a2(1320), f2(1270), f ′2(1525) and K∗2(1430) but another tensor, f2(1565) was discovered at
LEAR in the 1500 MeV mass range (May, 1989).

Before Crystal Barrel three scalar (0++) states were already well established: a0(980),
f0(980) and K∗0(1430). Further candidates have been reported and we shall discuss the scalars
in more details below. In the 1++ nonet two states compete for the ss assignment, f1(1420)
and f1(1510). In the 1+− nonet the ss meson is not established although a candidate, h1(1380),
has been reported (Aston, 1988a; Abele 1997e, 1997f). Many of the radial and higher orbital
excitations are still missing. Recent experimental reviews on light quark mesons have been
written by Blüm (1996) and Landua (1996) and theoretical predictions for the mass spectrum
can be found in Godfrey and Isgur (1985).

Only overall color-neutral qq configurations are allowed by QCD but additional colorless
states are possible, among them multiquark mesons (q2q2, q3q3) and mesons made of qq pairs
bound by an excited gluon g, the hybrid states (Barnes, 1983; Isgur and Paton, 1985; Close and
Page, 1995). According to flux tube models, hybrid states cluster around 1.9 GeV (Isgur and
Paton, 1985). Lattice QCD also predicts the lightest hybrid, a 1−+, around 1.9 GeV (Lacock,
1997). We shall show below (section 11) that mesons with the quantum numbers 1−+ do not
couple to qq and are therefore exotic. There are sofar three prime candidates for hybrid mesons:
the ρ̂(1405) with quantum numbers 1−+, π(1800) and η2(1870).

A striking prediction of QCD is the existence of isoscalar mesons which contain only gluons,
the glueballs (for a recent experimental review, see Spanier (1996)). They are a consequence
of the non-abelian structure of QCD which requires that gluons couple and hence may bind.
The models predict low-mass glueballs with quantum numbers 0++, 2++ and 0−+ (Szczepaniak,
1996). The ground state glueball, a 0++ meson, is expected by lattice gauge theories to lie in
the mass range 1500 to 1700 MeV. The mass of the pure gluonium state is calculated at 1550 ±
50 MeV by Bali (1993) while Sexton (1995) predicts a slightly higher mass of 1707 ± 64 MeV.
The first excited state, a 2++, is expected around 2300 MeV (Bali, 1993).

Since the mass spectra of qq, hybrids and glueballs overlap, hybrids and glueballs are easily
confused with ordinary qq states. This is presumably the reason why they have not yet been
identified unambiguously. For pure gluonium one expects couplings of similar strengths to ss
and uu + dd mesons since gluons are flavor-blind. In contrast, ss mesons decay mainly to kaons
and uu + dd mesons mainly to pions. Hence decay rates to ππ, KK, ηη and ηη′ can be used to
distinguish glueballs from ordinary mesons. However, mixing with nearby qq states may modify
the decay branching ratios (Amsler and Close, 1996) and obscure the nature of the observed
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state. Nevertheless, the existence of a scalar gluonium state, whether pure or mixed with qq, is
signalled by a third isoscalar meson in the 0++ nonet. It is therefore essential to complete the
SU(3) nonets in the 1500 - 2000 MeV region and to identify supernumerary states. The most
pressing questions to be addressed are:

1. What are the ground state scalar mesons, in particular is f0(980) the ss state and is
a0(980) the isovector or are these states KK molecules (Weinstein and Isgur, 1990; Close,
1993) in which case the nonet members still need to be identified? Where are the first
radial excitations and is there a supernumerary I = 0 scalar in the 1500 MeV region? Is
fJ(1710) scalar or tensor?

2. Where are the hybrid states? Is η2(1870) a hybrid and does ρ̂(1405) really exist?

3. In the 0−+ sector, are η(1295) and η(1440) the two isoscalar radial excitations of η and η′

or is η(1440) a structure containing several states (Bai, 1990; Bertin, 1995), in particular
a non-qq state around 1400 MeV?

Before reviewing the new mesons discovered by Crystal Barrel and providing clues to some of
these issues, we shall recall the mathematical tools used to extract the mass, width, spin and
parity of intermediate resonances in pp annihilation at rest.

7.2 Spin-parity analysis

The Crystal Barrel data have been analyzed using the isobar model in which the pp system
annihilates into N “stable” particles (π±, K±, K0, π0, η, η′) through intermediate resonances.
The decay chain is assumed to be a succession of two-body decays a→ bc followed by b→ b1b2

and c→ c1c2, etc. Final state rescattering is ignored. We shall calculate from the N momentum
vectors the probability wD that the final state proceeds through a given cascade of resonances.
The final state may be from real data or from phase space distributed Monte Carlo events to
be weighted by wD.

The spins and parities of intermediate resonances are determined using the helicity formal-
ism developed by Jacob and Wick (1959) or the equivalent method of Zemach tensors (Zemach,
1964, 1965). Here we describe briefly the helicity formalism. Suppose that a mother resonance
with mass m0 and spin J decays into two daughters (spins S1 and S2) with total spin S and rel-
ative angular momentum L. As quantization axis we choose the flight direction of the mother.
The decay amplitude is given by the matrix (Amsler and Bizot, 1983)

Aλ1,λ2;M = DJ
λM(θ, φ)〈Jλ|LS0λ〉〈Sλ|S1S2λ1,−λ2〉 ×BWL(m), (54)

where the row index λ = λ1−λ2 runs over the (2S1 +1)(2S2 +1) helicity states and the column
index M over the 2J + 1 magnetic substates; θ and φ refer to the decay angles in the mother
rest frame. BWL(m) is the Breit-Wigner amplitude7

BWL(m) =
m0Γ0

m2
0 −m2 − im0Γ(m)

FL(p)
√
ρ, (55)

where

Γ(m) = Γ0
m0

m

p

p0

F 2
L(p)

F 2
L(p0)

. (56)

7The phase space factor
√
ρ =

√
2p/m should be dropped in Eq. (55) when events are drawn by Monte

Carlo simulation, already assuming phase space distribution.
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The mass and width of the resonance are m0 and Γ0, p is the two-body decay momentum and
p0 the decay momentum for m = m0. The damping factors FL(p) are given in Table 4. The
matrix D is given by

DJ
λM(θ, φ) = eiMφdJλM(θ) (57)

where the matrix dJλM(θ) is the usual representation of a rotation around the y-axis, see for
example Barnett (1996).

We shall describe the annihilation to the observed final state by a product of matrices A for
successive decays in the cascade. Hence we first calculate from the N final state momentum
vectors the angles θ and φ for all resonances through a series of Lorentz boosts, apply Eq. (54)
to each decay and obtain the total amplitude through matrix multiplications, for example

A = [A(c→ c1c2)⊗ A(b→ b1b2)]A(pp→ bc), (58)

where ⊗ denotes a tensor product. The matrix A has as many rows as the total final state spin
multiplicity and has 2J + 1 columns, where J is the total spin of the pp system. We define the
quantization axis as the direction of one of the daughters in the first decay (the annihilating pp
atom) for which we choose θ = 0 , φ = 0 and BWL(2mp) = FL(p)

√
p.

Several decay chains of intermediate resonances may lead to the same observed final state
of N stable particles. The transition probability wD for chains starting from the same atomic
state is given by the coherent sum

wD = w × ε× Tr [(
∑
j

αjAj)ρ̃(
∑
k

α∗kA
†
k)] = w × ε× Tr |

∑
j

αjAj|2, (59)

where the sums extend over all decay chains labelled by the matrices Aj. We have assumed
that the initial spin-density matrix ρ̃ is unity since the pp system is unpolarized. The phase
space w and the detection probability ε will be ignored for Monte Carlo events drawn according
to phase space and submitted to the detector simulation, since w = 1 and ε = 1 or 0 for every
Monte Carlo event. The parameters αj = aj exp(−iφj) are unknown constants to be fitted and
one phase, say φ0, is arbitrary and set to zero. For chains decaying into the same resonances
but with different electric charges (e.g. ρ+π−, ρ−π+, ρ0π0 → π+π−π0) these constants are given
by isospin relations. The contributions from different atomic states are given by incoherent
sums, i.e. by summing weights wD of the form (59).

As an example, let us derive the weight wD for the annihilation channel pp → ρ0ρ0 →
2π+2π− from the atomic state 1S0 (JPC = 0−+). Parity, C-parity and total angular momentum
conservation require for ρ0ρ0 that L = 1 and S = 1 (see section 4.1). The first Clebsch-Gordan
coefficient in (54) is, apart from a constant,

〈0λ|110λ〉〈1λ|11λ1,−λ2〉 = λ1δλ1λ2 , (60)

and hence the amplitude vanishes unless the ρ’s are emitted with the same helicity λ1 = λ2 6= 0.
With J = 0, the matrices (57) are unity and therefore A(pp) is a column-vector with 9 rows

A(pp) =



1
0
.
.
.
0
−1


F1(p)

√
p. (61)
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For ρ→ π+π− one finds with S = 0 and J = 1 that L = 1 and the Clebsch-Gordan coefficients
are unity. Hence we get with λ = 0 the 3-dimensional row-vector

A(ρ) = [D1
01(θ, φ), D1

00(θ, φ), D1
0−1(θ, φ)]BW1(m). (62)

With Eq. (58) one then obtains

A = [A(ρ1)⊗ A(ρ2)]A(pp)

= [D1
01(θ1, φ1)D1

01(θ2, φ2)−D1
0−1(θ1, φ1)D1

0−1(θ2, φ2)]

×BW1(m1)BW1(m2)F1(p)
√
p,

= i sin θ1 sin θ2 sin(φ1 + φ2)BW1(m1)BW1(m2)F1(p)
√
p, (63)

and therefore

wD = sin2 θ1 sin2 θ2 sin2(φ1 + φ2)|BW1(m1)BW1(m2)|2F 2
1 (p)p. (64)

The angles refer to the directions of the pions in the ρ rest frames, with respect to the flight
direction of the ρ′s. Therefore the most probable angle between the planes spanned by the two
dipions is 90◦. This angular dependence is familiar in parapositronium (0−+) annihilation or
π0 decay where the γ polarizations are preferably orthogonal (φ1 + φ2 = 90◦). However, there
are two ways to combine four pions into ρ0ρ0 and therefore the final weight is actually given by
the coherent sum (59) of two decay chains with α1 = α2.

Table 8: Relative sign of α1 and α2 for pp annihilation into πKK (see text).

Channel 1S0(pp) 3S1(pp)
I = 0 I = 1 I = 0 I = 1

π±K∓K0 + – – +
π0K+K− + + – –
π0K0K0 + + – –

As another example of symmetrization let us consider pp annihilation into πKK which will
be discussed in detail below. The amplitudes for annihilation through the intermediate K∗

are related through isospin Clebsch-Gordan coefficients (see for example Conforto (1967) or
Barash (1965)). In general, annihilation may occur from 1S0 or 3S1 with isospin I = 0 or 1.
For example, π0K+K− proceeds through K∗+ → π0K+ or K∗− → π0K− with coefficients α1

and α2 equal in absolute magnitude and the two chains interfere. Table 8 gives the relative
sign between α1 and α2. Note that for 3S1 the matrix (57) flips the sign so that the observed
interference pattern is the same for 1S0 or 3S1, namely constructive in π0K+K−, π0K0K0 and
(I = 0) π±K∓K0, and destructive in (I = 1) π±K∓K0. The signs given in Table 8 also apply
to KK intermediate states with isospin i = 1 from I(pp) = 0 and I(pp) = 1 (the latter only
contributing to π±K∓K0) and for states with isospin i = 0 from I(pp) = 1 (to which π±K∓K0

does not contribute).
The procedure to analyze data is as follows: Phase space distributed Monte Carlo events

are generated, tracked through the detector simulation and submitted to the reconstruction
program. As already mentioned, this procedure automatically takes care of the factors ρ, w
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and ε. For pp annihilation into three stable particles, there are only two independent kinematic
variables. One usually chooses the invariant masses squared m2

12 and m2
13. The two-dimensional

distribution (Dalitz plot) is then uniformly populated for phase space distributed events. The
procedure consists in calculating wD for each Monte Carlo event and to vary the constants
αi, the widths, masses and spin-parity assignments of the resonances until a good fit to the
observed Dalitz plot density is achieved. Resonances with spins larger than 2 are too heavy to
be produced in pp annihilation at rest and are therefore ignored.

For the Dalitz plot fits it is convenient to factorize wD in terms of the real constants aj and
φj:

wD =
∑
i

a2
iQii + 2

∑
i<j

aiajRe[Qij] cos(φi − φj) + 2
∑
i<j

aiajIm[Qij] sin(φi − φj), (65)

where
Qij = Tr [AiA

†
j]. (66)

Dalitz plots weighted by Qii, Re[Qij] and Im[Qij]are then produced for each pair of chains i, j
(i ≤ j). The Qij, and correspondingly the weights wD, are normalized to the total number of
real events NT :

Qij → Qij/
√
fifj, (67)

with
fi =

∑
Qii/NT , (68)

where the sum runs over all Monte Carlo events. One then divides the Dalitz plots into cells,
adds them according to Eq. (65) and builds the χ2

χ2 =
∑ (n− wD)2

n+ w2
D/nMC

(69)

where the sum extends over all cells. The number of real events in each cell is denoted by n
and the number of Monte Carlo events by nMC .

With limited statistics or for more than two degrees of freedom (final states with more than
three stable particles) the χ2 minimization may be replaced by a likelihood maximization. One
minimizes the quantity S = - 2 lnL or

S = 2NT ln

MT∑
i=1

wi[MC]

− 2
NT∑
i=1

lnwi[DAT ], (70)

where wi[MC] and wi[DAT ] are weights wD calculated for Monte Carlo and data events,
respectively. The sums run over NT data events and MT Monte Carlo events.

From the best fit the fractional contributions of the resonances in chain i are given by

ri ≡
a2
i∑
i a

2
i

, (71)

where, obviously,
∑
ri = 1. This is a somewhat arbitrary definition which may not agree with

the directly visible Dalitz plot densities, because interferences beween the chains are neglected
in Eq. (71). One may define alternatively

ri ≡ a2
i , (72)

but then
∑
ri may differ significantly from unity in the presence of strong interferences. Hence

decay branching fractions for broad interfering resonances are not measurable unambiguously.
This is an unavoidable caveat to keep in mind when extracting the internal structure of broad
states from their decay branching ratios.
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7.3 K-matrix analysis

The Breit-Wigner factors (55) violate unitarity when two resonances with the same quantum
numbers overlap and decay into the same final state. Also, they do not describe distortions in
the mass spectrum that occur around kinematical thresholds. For example, the f0(980)→ ππ
appears as a dip rather than a peak in the ππ mass spectrum of elastic ππ scattering, due to
the opening of the decay channel f0(980)→ KK (Au, 1987).

This behaviour can be described with the K-matrix formalism. A detailed description can
be found in Chung (1995) and I shall only recall the formulae used in the analysis of Crystal
Barrel data. Consider for instance the four scattering reactions(

ππ → ππ ππ → KK
KK → ππ KK → KK

)
. (73)

The transition amplitude T for a given partial wave is described by the 2× 2 K-matrix

T = (1− iKρ)−1K (74)

with the real and symmetric matrix

Kij(m) =
∑
α

γαiγαjmαΓ′α
m2
α −m2

Bαi(m)Bαj(m) + cij. (75)

The sum runs over all resonances with K-matrix poles mα decaying to ππ and KK with (real)
coupling constants γα1 and γα2 , respectively, where

γ2
α1

+ γ2
α2

= 1. (76)

The factors Bαi are ratios of Blatt-Weisskopf damping factors (Table 4)

Bαi(m) =
FL(pi)

FL(pαi)
, (77)

where L is the decay angular momentum, p the π or K momenta and pαi their momenta at
the pole mass mα. The optional real constants cij allow for a background (non-resonating)
amplitude8. In Eq. (74) the matrix ρ(m) describes the two-body phase space and is diagonal
with ρ11 ≡ ρ1 = 2pπ/m and ρ22 ≡ ρ2 = 2pK/m. For masses far above kinematical threshold
ρi ∼ 1 and below KK threshold ρ2 becomes imaginary.

The (K-matrix) partial width of resonance α to decay into channel i is defined as

Γαi(mα) = γ2
αi

Γ′αρi(mα), (78)

and the (K-matrix) total width as
Γα =

∑
i

Γαi . (79)

For a resonance with mass far above kinematic thresholds one obtains the partial and total
widths

Γαi = γ2
αi

Γ′α, Γα = Γ′α, (80)

8For the ππ S- wave a factor (m2 − 2m2
π)/m2 is multiplied to the K-matrix to ensure a smooth behaviour

near threshold.
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respectively. For one resonance and one channel (elastic scattering) the K-matrix reduces to

K =
m0Γ′0B

2(m)

m2
0 −m2

, (81)

and T (Eq. (74)) reduces to the relativistic Breit-Wigner

T =
m0Γ0B

2(m)/ρ(m0)

m2
0 −m2 − im0Γ(m)

, (82)

with

Γ(m) = Γ0
ρ(m)

ρ(m0)
B2(m). (83)

For a resonance far above threshold and with Γ0 << m0 we get the familiar expression

T =
Γ0/2

m0 −m− iΓ0/2
. (84)

Normally, the mass mR and width ΓR of a resonance are obtained from the poles of the T -
matrix. Extending the mass m to complex values we find from (84) the poles at

mP = mR − i
ΓR
2
, (85)

with mR = m0 and ΓR = Γ0. In general, however, mR does not coincide with the pole of the
K-matrix and ΓR is different from the K-matrix width. For example, for two non-overlapping
resonances far above threshold, the K-matrix, T -matrix and Breit-Wigner poles coincide. As
the resonance tails begin to overlap the two T -matrix poles move towards one another (for an
example, see Chung, (1995)).

The ππ S-wave scattering amplitude is related to the ππ phase shift δ and inelasticity η
through the relation

ρ1(m)T11(m) =
η(m) exp[2iδ(m)]− 1

2i
. (86)

According to Eq. (74) the corresponding K-matrix then reads for pure elastic ππ-scattering
(η ≡ 1)

K11(m) =
tan δ(m)

ρ1(m)
(87)

and becomes infinite at m = m0, when δ passes through 90◦. However, the amplitude T does
not, in general, reach a resonance when δ = π/2. As an example, consider the ππ S-wave
scattering amplitude described by the amplitude (86) in the complex plane (Argand diagram):
The intensity |T |2 reaches its maximum value around 850 MeV (δ = 90◦), loops back and passes
rapidly through the KK threshold (see Fig. 19 below and Au (1987)). At ∼1000 MeV |T |2
reaches its minimum value (δ = 180◦) and then starts a new (inelastic) loop. The f0(980)
then appears as a hole in the ππ intensity distribution. We shall return to the S-wave Argand
diagram when discussing the fits to Crystal Barrel data.

Consider now the production of a resonance α in pp annihilation. In the isobar model, the
resonance is assumed not to interact with the recoiling system. The coupling strength to pp is
denoted by the (complex) constant βα while γαi describes its decay strength into channel i (say
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Figure 19: Argand diagram of the ππ scattering amplitude T obtained from a common fit to
production and scattering data (from Spanier, 1994).

ππ for i = 1 and KK for i = 2). Following Aitchison (1972) the amplitudes are given by the
components of the vector

T = (1− iKρ)−1P. (88)

The K-matrix now describes the propagation of the channel i through the resonances α while
the vector P describes their production. P and K share the common poles mα so that T
remains finite at the poles. The vector P is given by

Pj(m) =
∑
α

βαγαjmαΓ′αBαj(m)

m2
α −m2

, (89)

where the sum runs over all resonances. For a single resonance feeding only one decay channel
we again obtain from Eq. (88) a Breit-Wigner distribution of the form (82) with coupling
strength β:

T =
βm0Γ0B(m)/ρ(m0)

m2
0 −m2 − im0Γ(m)

. (90)

Let us now assume a series of resonances with the same quantum numbers decaying into
two final states. The amplitude for the first final state is given by Eq. (88):

T1 =
(1− iK22ρ2)P1 + iK12ρ2P2

1− ρ1ρ2D − i(ρ1K11 + ρ2K22)
, (91)

with
D ≡ K11K22 −K2

12. (92)

As an example, consider a single resonance, say a0(980) decaying to ηπ and KK. In this case
D ≡ 0 and B(m) ≡ 1 (S-wave). We then obtain from Eq. (91) the formula (Flatté, 1976)

T (ηπ) =
bg1

m2
0 −m2 − i(ρ1g2

1 + ρ2g2
2)
, (93)
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with

gi ≡ γi
√
m0Γ′0 ⇒

2∑
i=1

g2
i = m0Γ′0, (94)

and
b ≡ β

√
m0Γ′0. (95)

The phase space factors are

ρ1(m) =
2pη
m

and ρ2(m) =
2pK
m

=

√
1− 4m2

K

m2
. (96)

The T (KK) amplitude is obtained by interchanging the labels 1 and 2 in Eq. (93). Below
KK threshold ρ2 becomes imaginary. Compared to pure ηπ decay this leads to a shift of the
resonance peak and to a narrower and asymmetric distribution of the observed signal in the ηπ
channel. This is shown in Fig. 20 for g1 = 0.324 GeV, g2 = 0.329 GeV (hence Γ′0 = 0.46 GeV).
These parameters have been extracted from the a0(980) contribution to pp→ ηπ0π0 and KKπ
(section 8.8). A width of 54.12 ± 0.36 MeV was determined directly from the a0(980) → ηπ
signal in the annihilation channel ωηπ0 (Amsler, 1994c), in good agreement with the observed
width in Fig. 20. Also shown in Fig. 20 is the expected distribution for Γ′0 = 0.46 GeV,
assuming no KK decay. The observed width Γ0 = Γ′0ρ1(m0) increases to 0.31 GeV.
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Figure 20: ηπ and KK mass distributions for the a0(980) resonance in pp→ ηπX and KKX
(in arbitrary units and assuming that no other resonance is produced in these channels). The
dashed line shows the ηπ mass distribution for the same width Γ′0 in the absence of KK coupling
(g2 = 0).

The standard procedure in the analysis of Crystal Barrel data is to replace the Breit-
Wigner function (55) by T (Eq. (88)) and to fit the parameters gαi , βα and mα. The resonance
parameters mR and ΓR are then extracted by searching for the complex poles (Eq. (85)) of the
matrix T . A one-channel resonance appears as a pole in the second Riemann-sheet and a two-
channel resonance manifests itself as a pole in the second or third Riemann-sheet (Badalyan,
1982).
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Some of the Crystal Barrel Dalitz plots have also been analyzed using the N/D formalism
(Chew and Mandelstam, 1960) which takes into account the direct production of three mesons
and also the final state interaction. In this formalism the amplitude T has the same denominator
as, e.g., in Eq. (91), but the numerator allows for additional degrees of freedom (Bugg, 1994).

8 Annihilation at Rest into Three Pseudoscalars

Proton-antiproton annihilation at rest into three pseudoscalars is the simplest process to search
for scalar resonances 0+ → 0−0−, the recoiling third pseudoscalar removing the excess energy.
The annihilation rates for these processes in liquid hydrogen (1S0 atomic state) are reasonably
large since no angular momentum barrier is involved. Channels with three pseudoscalars have
been studied earlier, but essentially in the 2-prong configuration and with limited statistics, e.g
π+π−π0 with 3,838 events (Foster, 1968b), π+π−η with 459 events (Espigat, 1972) and π+π−η′

with 104 events (Foster, 1968a). The samples collected by the Asterix collaboration at LEAR
(May, 1989; Weidenauer, 1990) are larger but were collected from atomic P-states. The π+π−π0

final state revealed the existence of a tensor meson, f2(1565), produced from P-states (May,
1989, 1990). In the kaonic sector, data were collected in bubble chambers for the final states
π±K∓KS (2,851 events) and π0KSKS (546 events) in the experiments of Conforto (1967) and
Barash (1965). Branching ratios for annihilation into three mesons are listed in Table 9.

Annihilation with charged pions is dominated by ρ(770) production which complicates the
spin-parity analysis of underlying scalar resonances in the ππ S-wave. Also, both 1S0 and 3S1

atomic states contribute. All-neutral (0-prong) channels are therefore simpler to analyze but
more complex to select due to the large γ-multiplicity. The channel π0π0π0 with 2,100 events
has been reconstructed earlier with optical spark chambers (Devons, 1973). The existence of a
scalar resonance decaying to ππ with mass 1527 and width 101 MeV was suggested in the 3π0

channel and in its π−π−π+ counterpart in pn annihilation in deuterium (Gray, 1983). This was
actually the first sighting of f0(1500) which will be discussed below.

The sizes of the data samples have been vastly increased by Crystal Barrel. We shall first
review annihilation into three neutral non-strange mesons. We start from 6γ final states and
select the channels pp → π0ηη, 3π0, π0π0η, π0ηη′ and π0π0η′ by assuming total energy and
total momentum conservation and constraining the 2γ masses to π0, η and η′ decays (7C fits),
excluding any other possible configuration: Events are accepted if the kinematic fit satisfies
the assumed three-pseudoscalar hypothesis with a confidence level typically larger than 10%.
Background from the other 6γ channels is suppressed by rejecting those events that also satisfy
any other 6γ final state hypothesis (including the strong ωω, ω → π0γ) with a confidence level of
at least 1%. The absolute branching ratios for the 6γ channels are determined by normalyzing
on the branching ratio for pp→ ωω. These three-pseudoscalar channels have all been analyzed
and we now review the salient features in their Dalitz plots. Results on kaonic channels are
appended to the next sections.

8.1 pp→ π0ηη

The first evidence for two I = 0 scalars in the 1400 MeV mass region, now called f0(1370)
and f0(1500), was obtained from a reduced sample of 2.3 × 104 π0ηη events (Amsler, 1992c).
The invariant mass distributions are shown in Fig. 21. The two scalars decaying to ηη are
also observed when one η decays to 3π0 (10γ final state), a channel with entirely different
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Table 9: Branching ratios for pp annihilation at rest into three narrow mesons. Mesons in
parentheses were not detected.
a using B(π0φ) from Table 6 and Eq. (47)
b average between Armenteros (1965) and Barash (1965)
‡ Crystal Barrel experiment

Channel Final state B Reference
π0π0π0 6γ 6.2 ± 1.0 10−3 Amsler (1995f)‡
π+π−π0 π+π−(π0) 6.9 ± 0.4 10−2 Foster (1968b)
π0ηη 6γ 2.0 ± 0.4 10−3 Amsler (1995e)‡
π0π0ω 7γ 2.00 ± 0.21 10−2 Amsler (1993a)‡

π+π−6γ 2.57 ± 0.17 10−2 Amsler (1994d)‡
π+π−ω 2π+2π−(π0) 6.6 ± 0.6 10−2 Bizzarri (1969)
ωηπ0 7γ 6.8 ± 0.5 10−3 Amsler (1994c)‡
π0π0η 6γ 6.7 ± 1.2 10−3 Amsler (1994b)‡

π+π−6γ 6.50 ± 0.72 10−3 Amsler (1994d)‡
π+π−η π+π−2γ 1.63 ± 0.12 10−2 Abele (1997a)‡

π+π−6γ 1.33 ± 0.16 10−2 Amsler (1994d)‡
2π+2π−(π0) 1.38 ± 0.17 10−2 Espigat (1972)
2π+2π−(π0) 1.51 +

−
0.17
0.21 10−2 Foster (1968a)

π0π0η′ 10γ 3.2 ± 0.5 10−3 Abele (1997g)‡
6γ 3.7 ± 0.8 10−3 Abele (1997g)‡

π+π−η′ π+π−6γ 7.5 ± 2.0 10−3 Urner (1995)‡
3π+3π−(π0) 2.8 ± 0.9 10−3 Foster (1968a)

π0ηη′ 6γ 2.3 ± 0.5 10−4 Amsler (1994f)‡
π0π0φ 8γ(KL) 9.7 ± 2.6 10−5 Abele (1997e)‡
π+π−φ 2π+2π−(KL) 4.6 ± 0.9 10−4 Bizzarri (1969)
π0KSKL 3π0(KL) 6.7 ± 0.7 10−4 Amsler (1993d)a‡
π0KSKS 2π+2π−(π0) 7.5 ± 0.3 10−4 b

π±K∓KS π+π−π±K∓ 2.73 ± 0.10 10−3 b

π±K∓KL π±K∓(KL) 2.91 ± 0.34 10−3 Abele (1998b)‡
ωKSKS 3π+3π−(π0) 1.17 ± 0.07 10−3 Bizzarri (1971)
ωK+K− K+K−π+π−(π0) 2.30 ± 0.13 10−3 Bizzarri (1971)
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systematics (Fig. 21(b)). The distributions in Fig. 21(a) and (b) are nearly identical.
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Figure 21: Invariant mass distributions for π0ηη; (a) ηη mass distribution for 6γ events showing
the two new scalar mesons; (b) ηη mass distribution for one η decaying to 3π0 (10γ final state,
not corrected for acceptance); (c) π0η mass distribution for 6γ events (2 entries/event) showing
the a0(980). The solid lines in (a) and (c) represent the best fit described in Amsler (1992c).

An amplitude analysis of the Dalitz plot distribution for the 6γ final state was performed
with the method outlined in the previous section. However, Breit-Wigner functions of the form
(55) were used to describe the resonances. The fit required JPC = 0++ for both ηη resonances.
The (Breit-Wigner) masses and widths were m =1430, Γ = 250 and m = 1560 ± 25 MeV,
Γ = 245 ± 50 MeV, respectively. Note that the width of the upper state appears smaller in
Fig. 21(a,b), due to interference effects.

The final analysis of this channel was performed with a tenfold increase in statistics, namely
3.1 × 104 π0ηη events from 0- prong data and 1.67 × 105 π0ηη events from a triggered data
sample requiring online one π0 and two η mesons (Amsler, 1995e). The Dalitz plot is shown
in Fig. 22(a). The horizontal and vertical bands are due to a0(980) decaying to ηπ0. One
also observes diagonal bands which correspond to the two states decaying to ηη. A residual
incoherent flat background of 5%, mainly due to π0π0ω → 7γ with a missing photon, has been
subtracted from the Dalitz plot before applying the amplitude analysis, this time with the full
K-matrix formalism.

Since S-wave dominates in liquid, the channel π0ηη proceeds mainly through the 1S0 atomic
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Figure 22: Dalitz plots of 3-pseudoscalar channels. Red and blue regions correspond to high,
respectively low, event densities; (a) π0ηη (198,000 events). The Dalitz plot is symmetrized
across the main diagonal; (b) π0π0η (symmetrized, 280’000 events); (c): 3π0 (712,000 events).
Each event is entered six times for symmetry reasons; (d) π0KLKL (37,358 events).
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state. The ηπ S-wave was parametrized by a 2×2 K-matrix with poles from a0(980) and
a0(1450). The parameters were taken from the π0π0η analysis (section 8.2), leaving the pro-
duction constants β free. A contribution from a2(1320) (ηπ D-wave) with fixed mass and width
was also offered to the fit. The ηη S- and D-waves were described by one-channel K-matrices.
Annihilation from atomic P-states was not included in the fit except for tensor mesons (e.g.
the expected f2(1565)) decaying to ηη. In fact the fit demands a contribution from a tensor
meson with mass ∼1494 and width ∼155 MeV, produced mainly from P-states.

The best fit was obtained with two poles for the ηη S-wave. The resonance parameters
(T -matrix poles) are:

f0(1370) : m = 1360± 35, Γ = 300− 600 MeV,

f0(1500) : m = 1505± 15, Γ = 120± 30 MeV. (97)

A scalar state decaying to ηη has been observed by the GAMS collaboration in the reaction
π−p→ ηηn with 38 GeV pions (Binon, 1983) and also with 300 GeV pions (Alde, 1988b). The
average mass and width are 1602 ± 16 MeV and 190 ± 28 MeV. This state also decays into
ηη′ (Binon, 1984). Mass and width were obtained assuming a Breit-Wigner amplitude. The
Crystal Barrel K-matrix mass and width of f0(1500) are 1569 and 191 MeV, respectively, in
accord with the Breit-Wigner parameters of Amsler (1992c) and of the GAMS resonance. It is
therefore generally accepted that the GAMS state, previously called f0(1590) by the Particle
Data Group, and the Crystal Barrel f0(1500) are identical (Barnett, 1996). The branching ratio
for π0ηη is given in Table 9 and the products of resonance production and decay branching
ratios are listed in Table 10.

8.2 pp→ π0π0η

This channel is relevant to search for isovector 0++ states decaying to ηπ. The π0π0η Dalitz
plot (2.8× 105 events) is shown in Fig. 22(b). Qualitatively, one observes a0(980) and a2(1320)
decaying to ηπ and f0(980) decaying to ππ. The strong interference patterns point to coherent
contributions from a single pp atomic state (1S0).

An amplitude analysis based on the K-matrix formalism (and, alternatively, the N/D for-
malism) has been performed, assuming pure S-wave annihilation (Amsler, 1994b). The ππ
S- wave was described by two poles, one for f0(980), coupling to ππ and KK, and one for
f0(1370). Elastic ππ-scattering data (Grayer, 1974; Rosselet, 1977) were included in the fit.
The ππ D-wave (f2(1270)) was also introduced but turned out to be negligible. The ηπ D-wave
was described by one pole for a2(1320). The ηπ S-wave was described by a one-pole 2 × 2
K- matrix for a0(980) with couplings g1 to ηπ and g2 to KK. Since decay to KK was not
measured, g2 was obtained indirectly from the ηπ line shape. The fit yielded g1 ∼ 0.353 GeV
and

g2
2

g2
1

∼ 0.88. (98)

These amplitudes were, however, not sufficient to describe the data. A satisfactory fit was
obtained by adding (i) a second pole to the ηπ S-wave, (ii) a second pole to the ηπ D-wave
and (iii) an ηπ P-wave. Note that the latter has the quantum numbers JPC = 1−+ which do
not couple to qq mesons. This wave was introduced to search for the ρ̂(1405) reported by Alde
(1988a).
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Table 10: Branching ratios for pp annihilation at rest in liquid determined from Dalitz plot
analyses. The branching ratios include all decay modes of the final state stable particles (e.g.
π0, η, η′) but only the decay mode of the intermediate resonance leading to the observed final
state.

Channel Contributing resonances
Subchannel Branching ratio

π0ηη a0(980), f0(1370), f0(1500), a2(1320), X2(1494)
f0(1370)π0 ∼ 3.5× 10−4

f0(1500)π0 (5.5± 1.3)× 10−4

a2(1320)η ∼ 5.6× 10−5

X2(1494)π0 ∼ 4.0× 10−4 (dominantly P-wave annihilation)

π0π0η a0(980), a0(1450), a2(1320), a′2(1650), (ηπ)P
(ππ)S ≡ f0(400− 1200) + f0(980) + f0(1370)

a0(980)π0 (8.7± 1.6)× 10−4

a0(1450)π0 (3.4± 0.6)× 10−4

(ππ)S η (3.4± 0.6)× 10−3

(ηπ)P π ∼ 1.0× 10−4

a2(1320)π0 (1.9± 0.3)× 10−3

a′2(1650)π0 ∼ 1.3× 10−4

π0π0π0 (ππ)S + f0(1500), f2(1270), f2(1565)
(ππ)S π

0 ∼ 2.6× 10−3

f0(1500)π0 (8.1± 2.8)× 10−4

f2(1270)π0 ∼ 1.8× 10−3

f2(1565)π0 ∼ 1.1× 10−3

π0ηη, π0π0η, 3π0 Coupled channels (S-wave annihilation only)
(ηη)S ≡ f0(400− 1200) + f0(1370)

(ππ)S π
0 (3.48± 0.89)× 10−3

(ππ)S η (3.33± 0.65)× 10−3

(ηη)S π
0 (1.03± 0.29)× 10−3

f0(1500)(→ π0π0)π0 (1.27± 0.33)× 10−3

f0(1500)(→ ηη)π0 (0.60± 0.17)× 10−3

f2(1270)(→ π0π0)π0 (0.86± 0.30)× 10−3

f2(1565)(→ π0π0)π0 (0.60± 0.20)× 10−3

f2(1565)(→ ηη)π0 (8.60± 3.60)× 10−5 (may be more than one object)
a0(980)(→ π0η)π0 (0.81± 0.20)× 10−3

a0(980)(→ π0η)η (0.19± 0.06)× 10−3

a0(1450)(→ π0η)π0 (0.29± 0.11)× 10−3

a2(1320)(→ π0η)π0 (2.05± 0.40)× 10−3 (including a′2(1650))

π0ηη′ f0(1500)
f0(1500)π0 (1.6± 0.4)× 10−4

π0π0η′ (ππ)S, a2(1320), a0(1450)
(ππ)S η

′ (3.1± 0.4)× 10−3

a2(1320)π0 (6.4± 1.3)× 10−5

a0(1450)π0 (1.16± 0.47)× 10−4
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Branching ratios are given in Table 10. The branching ratio for π0π0η (Table 9) is in
excellent agreement with the one derived from the channel π0π0η → π+π−3π0 (Amsler, 1994d).
The main result was the observation of a new isovector scalar resonance in the ηπ S-wave:

a0(1450) : m = 1450± 40, Γ = 270± 40 MeV. (99)

This resonance manifests itself as a depletion in the bottom right (or top left) corner of the
Dalitz plot (Fig. 22 (b)). Evidence for the a0(1450) decaying to ηπ is also reported in an
analysis of the channel π+π−η which requires, in addition, an amplitude for ρη production
from 3S1 (Abele, 1997a).

The ηπ D-wave contribution corresponds to a 2++ resonance around 1650 MeV, called
a′2(1650) in Table 10, with a width of about 200 MeV. This state could be the radial excitation
of a2(1320). The mass and width of the structure in the ηπ P- wave (exotic 1−+) are not
well defined. They vary from 1200 to 1600 MeV and from 400 to 1000 MeV, respectively,
without significant changes in the χ2. The 1−+ ρ̂(1405) reported by Alde (1988a) is therefore
not required by the π0π0η data. We shall return to the ηπ P-wave in section 11.

8.3 pp→ π0π0π0

The first analysis of this channel used a sample of only 5.5×104 events and reported an isoscalar
2++ meson at 1515 ± 10 MeV with width 120 ± 10 MeV, decaying to π0π0 (Aker, 1991). This
state was identified with f2(1565) that had been observed before in the final state π+π−π0 in
hydrogen gas (May, 1989, 1990). P-wave annihilation from 3P1 and 3P2 was therefore allowed
when fitting the 3π0 channel. Resonances in the ππ S-wave were described by the ππ elastic
scattering amplitude, replacing the Breit- Wigner amplitude by

BW0(m) =
m

p

(
η(m) exp[2iδ(m)]− 1

2i

)
, (100)

according to Eq. (86), where δ and η were taken from the Argand diagram of Au (1987). This
is an approximation assuming equal production strengths for all resonances in the ππ S-wave,
which is reasonable for the 3π0 channel, as I will show below.

A statistical sample an order of magnitude larger then revealed a new feature (Amsler,
1994e) which was consolidated by a reanalysis of the early Crystal Barrel data (Anisovich,
1994): the presence in the Dalitz plot of a narrow homogeneously populated band from a scalar
resonance, f0(1500), decaying to 2π0. The 3π0 Dalitz plot is shown in Fig. 22(c) and the 2π0

mass projection in Fig. 23.
Qualitatively, one observes the following features: the population along the ππ mass band

marked f2(1270) increases at the edges of the Dalitz plot indicating that one decay π0 is
preferably emitted along the flight direction of the resonance. This is typical of a spin 2
resonance decaying with the angular distribution (3 cos2 θ− 1)2 from 1S0 or (1 + 3 cos2 θ) from
3P1. The blobs labelled f2(1565) at the corners correspond to an angular distribution sin2θ
from another spin 2 resonance produced from 3P2, together with constructive interference from
the two ππ S-waves. The f0(980) appears as a narrow dip in the ππ S-wave. The new feature
is the homogeneous narrow band marked f0(1500) which must be due to a spin 0 state.

The analysis of the full data sample was performed with the K- matrix formalism (Amsler,
1995f). A 2 × 2 K-matrix with three poles was sufficient to describe the ππ S-wave. Elastic
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Figure 23: π0π0 mass projection in pp→ 3π0 (3 entries/ event) with the fit (solid line) described
in the text.

ππ scattering data up to 1200 MeV from Grayer (1974) and Rosselet (1977) were also included
in the fit. The contributing scalar resonances are f0(980) and

f0(1370) : m ' 1330, Γ ∼ 760 MeV,

f0(1500) : m = 1500± 15, Γ = 120± 25 MeV. (101)

A 4-pole K-matrix helps to constrain the f0(1370) parameters, giving

f0(1370) : m = 1330± 50, Γ = 300± 80 MeV, (102)

and the 4th pole corresponds to a 600 MeV broad structure around 1100 MeV (called f0(400−
1200) by the Particle Data Group (Barnett, 1996)) and also reported by a recent reanalysis
of ππ S-wave data (Morgan and Pennington, 1993; Kaminski, 1997). The data are therefore
compatible with 3 or 4 poles and it is not obvious that f0(1370) and f0(400 − 1200) are not
part of the one and the same object.

A one-dimensional K-matrix describes the ππ D-wave. In addition to f2(1270) one finds

f2(1565) : m ∼ 1530, Γ ∼ 135 MeV. (103)

The fractional contribution of P-waves is 46%. Without P-waves the fit deteriorates markedly
but the f0(1370) and f0(1500) parameters remain stable. We shall return to the f2(1565) in
the discussion below. Branching ratios are given in Table 10.

8.4 Coupled channel analysis

A simultaneous fit was performed to the channels π0ηη, π0π0η and 3π0 (Amsler, 1995g) using
the full data samples presented in the previous sections with, in addition, the ππ- scattering
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data up to 1200 MeV. However, pure S-wave annihilation was assumed. A 3 × 3 K-matrix
with 4 poles was used to describe the ππ S-wave coupling to ππ, ηη and the at that time
unmeasured KK through the resonances f0(980), f0(1370), f0(1500), taking also into account
the broad structure around 1100 MeV. Common βα parameters (Eq. (89)) were introduced to
describe the production of resonances associated with the same recoiling particle. For example,
f0(1500) recoiling against π0 is produced with the same strength in π0ηη and 3π0. The ηπ S-
wave was described by a 2 × 2 K-matrix for a0(980) and a0(1450). The ππ, ηη and ηπ D-waves
were treated with one dimensional K-matrices, the latter including a2(1320) and a′2(1650) with
pole parameters taken from the π0π0η analysis of section 8.2.

400 800 1200 1600
0

400

800

1200

1600

m [MeV]

|
T|

2

f0(980)

f0(1370)

f0(1500)

f0(400-1200)

Figure 24: Isoscalar S-wave production intensities |T |2 in 3π0 (full curve), 2π0η (dashed curve)
and 2ηπ0 (dotted curve) before multiplying by the phase space factor ρ. The vertical scale is
arbitrary (from Spanier, 1994).

The branching ratios are given in Table 10. Note that the ππ S-wave includes contributions
from f0(400− 1200), f0(980) and f0(1370) (but excluding f0(1500)) which cannot be disentan-
gled due to interferences. The fit is in good agreement with the single channel analyses and
constrains the resonance parameters. Hence a consistent description of all three annihilation
channels was achieved with the following main features:

1. The data demand three scalar resonances in the 1300 - 1600 MeV region:

a0(1450) : m = 1470± 25, Γ = 265± 30 MeV,
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f0(1370) : m = 1390± 30, Γ = 380± 80 MeV,

f0(1500) : m = 1500± 10, Γ = 154± 30 MeV. (104)

2. The broad scalar structure around 1100 MeV (f0(400 − 1200)) has very different pole
positions in sheets II and III, making a resonance interpretation of this state difficult.

3. The production data demand a larger width (' 100 MeV) for f0(980) than the ππ scat-
tering data alone (' 50 MeV, according to Morgan and Pennington (1993)).

4. A tensor meson is observed in the ππ D-wave with mass 1552 and width 142 MeV, in
accord with May (1889, 1990) notwithstanding the absence of atomic P-waves in the
present analysis. A structure is also required in this mass range in the ηη D-wave. This
state is not compatible with f ′2(1525) which is produced with a much lower rate, as we
shall see in section 8.7.

The ππ scattering amplitude T (Eq. (86)) obtained from the fit to the elastic scattering
data and the Crystal Barrel data is shown in Fig. 19. Note that Crystal Barrel KK data are
not yet included and therefore the third K-matrix channel also contains by default all other
unmeasured inelasticities. Figure 24 shows the I = 0 S-wave production intensity |T |2 (Eq.
(88)) for the three annihilation channels. The maxima around 1300 and 1550 MeV correspond
to the K-matrix poles for f0(1370) and f0(1500). It is instructive to compare the dip around
1000 MeV in the ππ S-wave for the 3π0 channel to the peak in the π0π0η channel, both due
to f0(980). This is produced by interferences between the ππ S-waves in 3π0 which have the
opposite sign to the interference between the ππ and the ηπ S-waves in ηπ0π0. The ππ S-
wave in ππ scattering exhibits qualitatively the same behaviour as in pp annihilation into 3π0,
namely sharp minima around 1000 and 1450 MeV. The ansatz (100) used in several Crystal
Barrel analyses (e.g. in Aker (1991)) for the ππ S-wave is therefore a rough but reasonable
approximation.

8.5 pp→ π0ηη′

Another piece of evidence for f0(1500) stems from π0ηη′ (Amsler, 1994f). This channel was
also reconstructed from the 6γ final state. Since η′ decays to γγ with a branching ratio of only
2.1% the data sample is small (977 events). Most of these events were collected with the online
trigger requiring one π0, one η and one η′. The π0ηη′ Dalitz plot shows an accumulation of
events at small ηη′ masses. Figure 25 shows the ηη′ mass projection. The ηη′ mass spectrum
from the same annihilation channel, but with η′ → ηπ+π−, has entirely different systematics
but is identical (inset in Fig. 25). The enhancement at low masses is due to a scalar resonance
since the angular distribution in the ηη′ system is isotropic. A maximum likelihood fit was
performed to the 6γ channel using a (damped) Breit-Wigner according to Eqs. (55), (56) and
a flat incoherent background. The resonance parameters are

f0(1500) : m = 1545± 25, Γ = 100± 40 MeV. (105)

The branching ratio is given in Table 10. The f0(1500) mass is somewhat larger than for 3π0

and π0ηη. However, Abele (1996a) points out that a constant width in the denominator of the
Breit-Wigner function yields a mass around 1500 MeV. This is a more realistic procedure since
the total width at the ηη′ threshold remains finite due to the channels ππ and ηη. However,
this does not modify the branching ratio for f0(1500) → ηη′. We shall therefore ignore Eq.
(105), when averaging below the f0(1500) mass and width.
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Figure 25: ηη′ mass projection in π0ηη′. The full curve is the fit to the 6γ data with a scalar
resonance close to threshold and the dashed curve shows the expected phase space distribution.
The inset shows the ηη′ mass distribution from π0η(→ 2γ)η′(→ ηπ+π−).

8.6 pp→ π0π0η′

With 0-prong data this final state is accessible through η′ → 2γ or η′ → ηπ0π0, leading to 6,
respectively 10 photons (Abele, 1997g). The branching ratios from both final state configura-
tions agree (Table 9). A sample of 8,230 10γ events were kinematically fitted to 4π0η. The
π0π0η mass distribution (Fig. 26) shows a sharp signal from η′ and a shoulder around 1400
MeV due to the E meson that will be discussed in section 12.

The π0π0η′ Dalitz plot was obtained by selecting events in the η′ peak and subtracting
background Dalitz plots from either sides of the peak. It shows a broad accumulation of events
in its center which can be described by a dominating ππ S-wave and small contributions from
a2(1320) and a0(1450) with branching ratios given in Table 10. These resonances are included in
the fit with fixed mass and width. The ratios of rates for a2(1320) and a0(1450) decays into ηπ
and η′π can be predicted from SU(3) and compared with measurements. This will be discussed
in section 10.1. The analysis of the 6γ Dalitz plot (3,559 events) leads to similar results. Figure
27 shows that a0(1450) is required for a satisfactory description of this annihilation channel.

8.7 pp→ π0KLKL

The isoscalar f0(1500) has been observed to decay into π0π0, ηη and ηη′. To clarify its internal
structure it was essential to also search for its KK decay mode. In a previous bubble chamber
experiment (Gray, 1983) no KK signal had been observed in the 1500 MeV region in pp anni-
hilation into KKπ, leading to the conclusion that the f0(1500) coupling to KK is suppressed
(Amsler and Close, 1996). However, no partial wave analysis was performed due to limited
statistics.

Crystal Barrel has therefore searched for f0(1500) in the annihilation channel π0KLKL

(Abele, 1996b; Dombrowski, 1996) which proceeds from the 1S0 atomic state. All-neutral
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Figure 26: 2π0η mass distribution recoiling against π0π0 for events with 10 reconstructed
photons (6 entries/event).
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Figure 27: η′π0 mass projection in π0π0η′ → 6γ for data (dots) and fits (histograms); (a) (ππ)
S-wave and a2(1320); (b) including a0(1450) (best fit).

events were selected with three energy clusters in the barrel and the channel pp → π0KLKL

could be reconstructed by measuring the π0(→ 2γ) momentum and the direction of one of the
KL which interacts hadronically in the CsI barrel. The main background contribution was due
to events with a reconstructed π0 and one additional γ which happen to fulfil the π0KLKL

kinematics but for which one or more γ’s have escaped detection. This background (∼ 17%)
could be removed by subtracting a Dalitz plot constructed from 2γ pairs with invariant masses
just below or above the π0 mass.

Further background contributions were due to pp → ωKLKL where ω decays to π0γ and
both KL are not detected, and pp → KSKL where one photon from KS → π0π0 → 4γ and
the KL are undetected. These events can be removed with appropriate mass cuts. Background
from final states like ωη, ωπ0 and 3π0 were studied by Monte Carlo simulation. The total
residual background contamination was (3.4± 0.5)%.

The background subtracted Dalitz plot is shown in Fig. 22(d). This plot has not been sym-
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Figure 28: The phase shift in elastic Kπ scattering from Aston (1988b). The curve shows the
fit using prescription (106).

metrized with respect to the diagonal axis since one KL is detected (vertical axis) whilst the
other is missing (horizontal axis). The interaction probability as a function of KL momentum
was measured by comparing the intensities along the two K∗ bands, K∗ → KLπ

0. The inter-
action probability was found to be flat with KL momentum, but increasing slowly below 300
MeV/c (Dombrowski, 1996). The π0KLKL Dalitz plot shown in Fig. 22(d) is already corrected
for detection efficiency and for KL decay between the production vertex and the crystals. Its
symmetry along the diagonal axis is nearly perfect, indicating that acceptance and backgrounds
have been taken into account properly.

One observes signals from K∗(892) decaying to Kπ and a2(1320)/f2(1270) decaying to KK.
The accumulation of events at the edge for small KK masses is due to the tensor f ′2(1525)
which is observed for the first time in pp annihilation at rest. These resonances and the broad
K∗0(1430) were introduced in a first attempt to fit the Dalitz plot9. The K-matrix for the Kπ
(I = 1/2) S- wave was written as

K =
am

2 + abp2
+
m0Γ0/ρ0

m2
0 −m2

, (106)

where the first term describes the low energy Kπ scattering (a is the scattering length and b
the effective range) and the second term describes the K∗0(1430) resonance. The parameters
m0,Γ0, a and b were determined by fitting the scattering amplitude T (Eq. (74)) to the Kπ
phase shifts (Aston, 1988b). The fit is shown in Fig. 28. Note that resonance occurs at δ ' 120◦.
The corresponding mass and width (T -matrix pole) for K∗0(1430) are m = (1423±10) MeV and
(277± 17) MeV, in close agreement with Aston (1988b) who used a different parametrization
and found m0 = 1429± 6 and Γ0 = 287± 23 MeV.

A one-pole K-matrix for a scalar resonance was added for the peak around 1450 MeV in
the KK mass distribution (Fig. 29). The fit clearly fails to describe the KK mass spectrum
(dashed line in Fig. 29). The second attempt assumed a K-matrix with two scalar resonances,
f0(1370) and f0(1500), in the KK amplitude. The fit now provided a satisfactory description
of the Dalitz plot and the KK mass spectrum (full line in Fig. 29). However, the isovector
a0(1450) is also expected to decay to KLKL and one cannot distinguish between isovectors and

9The absence of threshold enhancement from a0(980) or f0(980) at the upper right border of the Dalitz plot
could be due to destructive interference between these states and/or to the loss of acceptance close to the KK
threshold.
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due to interference from various amplitudes.
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isoscalars from the π0KLKL data alone. Therefore a Breit-Wigner was added for the isovector
a0(1450) with fixed mass and width taken from the coupled channel analysis (section 8.4). The
f0(1370) and f0(1500) poles are stable, nearly independent of a0(1450) contribution. One finds

f0(1370) : m = 1380± 40, Γ = 360± 50 MeV,

f0(1500) : m = 1515± 20, Γ = 105± 15 MeV, (107)

in agreement with the resonance parameters measured in the other decay channels.
Due to uncertainties in the KL interaction probability the branching ratio for π0KLKL could

not be determined accurately. The branching ratios given in Table 11 (Abele, 1996b; Dom-
browski, 1996) are therefore normalized to the known branching ratio for π0KSKS (Armenteros,
1965; Barash, 1965)10.

The branching ratios for pp → f0(1370) and f0(1500) → KLKL also vary with a0(1450)
contribution (Fig. 30). In Table 11 the branching ratios for f0(1370) and f0(1500) are therefore
derived from Fig. 30 assuming an a0(1450) contribution r0 to the π0KLKL final state, derived
from its measured contribution r = (10.8± 2.0)% to π±K∓KL (next section):

r0 =
r

4

B(pp→ π±K∓KS)

B(pp→ π0KSKS)
= (9.8± 1.9)%, (108)

where we have used the branching ratios from Armenteros (1965) and Barash (1965).
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Figure 31: dE/dx distribution in the jet drift chamber for 2-prong events with a missing KL.
The curve shows the expected (Bethe-Bloch) dependence.

8.8 pp→ π±K∓KL

This channel selects only isospin 1 resonances decaying to KK and therefore permits a direct
measurement of the contribution from isovectors to KKπ, in particular from a0(1450). Crystal

10The isospin contributions from 1S0 to the K∗K system cannot be determined in this channel since the K∗

bands interfere constructively for both I = 0 and I = 1.
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Table 11: Branching ratios for pp annihilation at rest in liquid into kaonic channels. The
branching ratios include only the decay mode of the intermediate resonance leading to the
observed final state.
a from the corresponding KS channels (Armenteros, 1965; Barash, 1965)
b includes low energy Kπ scattering
c fixed by π±K∓KL data

Channel pp(I) Contributing resonances
Subchannel Branching ratio

π0KLKL K∗(892), K∗0(1430), a2(1320), f2(1270), f ′2(1525)
f0(1370), f0(1500), a0(1450)

Totala (7.5± 0.3)× 10−4

K∗(892)K 1S0(0, 1) (8.71± 0.68)× 10−5

K∗0(1430)K (4.59± 0.46)× 10−5 b

a2(1320)π0 1S0(0) (6.35± 0.74)× 10−5

a0(1450)π0 (7.35± 1.42)× 10−5 c

f2(1270)π0 1S0(1) (4.25± 0.59)× 10−5

f ′2(1525)π0 (1.67± 0.26)× 10−5

f0(1370)π0 (2.20± 0.33)× 10−4

f0(1500)π0 (1.13± 0.09)× 10−4

π±K∓KL K∗(892), K∗0(1430), a2(1320)
a0(980), a0(1450), ρ(1450/1700)

Totala (2.73± 0.10)× 10−3

K∗(892)K 1S0(0) (2.05± 0.28)× 10−4

K∗0(1430)K (8.27± 1.93)× 10−4 b

a0(980)π (1.97 + 0.15
− 0.34)× 10−4

a2(1320)π (3.99 + 0.31
− 0.83)× 10−4

a0(1450)π (2.95± 0.56)× 10−4

K∗(892)K 1S0(1) (3.00± 1.10)× 10−5

K∗0(1430)K (1.28± 0.55)× 10−4 b

ρ(1450/1700)π (8.73 + 1.40
− 2.75)× 10−5

K∗(892)K 3S1(0) (1.50± 0.41)× 10−4

ρ(1450/1700)π (8.73± 2.75)× 10−5

K∗(892)K 3S1(1) (5.52± 0.84)× 10−4

a2(1320)π (1.42± 0.44)× 10−4
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Barrel has studied the reaction pp→ π±K∓KL with a non-interacting KL (Heinzelmann, 1996;
Abele 1998b). This channel is selected from 7.7×106 triggered 2-prong data by requiring exactly
two clusters in the barrel from π± and K∓. Particle identification is achieved by measuring the
ionisation in the drift chamber (Fig. 31) and a (1C) kinematic fit ensures momentum and energy
conservation. The background contribution, mainly from π+π−π0, is about 2%. The Dalitz
plot (Fig. 32) has been corrected for background and acceptance, and for the KL interaction
probability. The latter was determined by reconstructing the channel π0KS(→ π+π−)KL with
and without missing KL. The branching ratio

B(pp→ π±K∓KL) = (2.91± 0.34)× 10−3 (109)

is in excellent agreement with the one given in Table 11 for π±K∓KS from bubble chamber
experiments (Armenteros, 1965; Barash, 1965).
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Figure 32: π±K∓KL Dalitz plot (11,373 events).

The Dalitz plot shows clear signals from K∗(892), a2(1320) and a0(980). The K∗(892) and
a2(1320) were parametrized by Breit-Wigner functions. The a0(980) was described by a 2 × 2
K-matrix (Flatté formula (93)). The Kπ S-wave (K∗0(1430)) was treated using the data from
Aston (1988b), as described in the previous section. In contrast to π0KLKL, both atomic states
1S0 and 3S1 contribute. The I = 0 and I = 1 contributions to K∗(892)K can be determined
from the (destructive) interference pattern around the crossing point of the K∗ bands in Fig.
32.

The fit, however, did not provide a satisfactory description of the Dalitz plot and the fitted
a2(1320) mass, 1290 MeV, was significantly lower than the table value, a problem that had
been noticed earlier in bubble chamber data (Conforto, 1967). A substantial improvement in
the χ2 (Fig. 33) was obtained when introducing the a0(1450) as a second pole in the K-matrix,
together with a0(980), leading to the resonance parameters (T -matrix pole)

a0(1450) : m = 1480± 30, Γ = 265± 15 MeV, (110)
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Figure 33: χ2 dependence on the fractional contribution from a0(1450) to π±K∓KL.

in agreement with the ηπ decay mode. The a2(1320) mass now became compatible with the
table value (Barnett, 1996). We shall show below that the contribution to π±K∓KL of (10.8
± 2.0) % (Fig. 33) is consistent with predictions from the π0π0η channel, using SU(3).

An even better fit was achieved by adding a broad structure in the KK P-wave, presumably
from the radial excitations ρ(1450) and ρ(1700), which could not, however, be disentangled by
the fit.

For a0(980) one finds for the T -matrix pole in the second Riemann sheet the mass 987 ± 3
MeV and the width 86 ± 7 MeV. Using the ηπ decay branching ratio from the π0π0η analysis
(Table 10) one also obtains the ratio

B(a0(980)→ KK)

B(a0(980)→ ηπ)
= 0.23± 0.05. (111)

The ratio of couplings g2/g1 = gηπ/gKK can be tuned to satisfy Eq. (111) by integrating the
mass distributions over the a0(980) distribution (Fig. 20). One obtains g1 = 0.324 ± 0.015
GeV and g2

2/g
2
1 = 1.03 ± 0.14, in good agreement with the estimate from the line shape in the

π0π0η channel (Eq. (98)).
The branching ratios are given in Table 11. The intermediate K∗K is largest in the (I=1)

3S1 channel, a feature that was noticed before (Barash, 1965; Conforto, 1967) and that we have
used in section 6.1 as a possible explanation for the πφ enhancement. The branching ratios are
in fair agreement with those from Conforto (1967) and those for π0KLKL, except for the much
larger Kπ S-wave in π±K∓KL.

8.9 Summary

Let us summarize the results presented in this section. Crystal Barrel has studied the Dalitz
plots for annihilation at rest into three neutral light pseudoscalars: 3π0, 2π0η, 2π0η′, 2ηπ0,
π0ηη′, π0π0η′ and π0KLKL. Most of these channels are observed for the first time with very
high statistics. A consistent description of the data is achieved from the 1S0 initial state with
the K- matrix formalism when introducing (i) 4 poles for the (isoscalar) π0π0 S-wave, f0(980),
f0(1370), f0(1500) and the broad structure f0(400 − 1200); (ii) 2 poles for the ηπ0 S-wave,
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a0(980) and a0(1450); (iii) a tensor in the ππ P- wave, f2(1565). The f ′2(1525) is observed with
rates consistent with prediction from the Quark Line Rule. There is also evidence for the radial
excitation of a2(1320) around 1650 MeV. A charged a0(1450) is observed in the annihilation
channel π±K∓KL. Its production rate is used to disentangle the contributions from f0(1370),
f0(1500) and a0(1450) to π0KLKL and therefore fix the branching ratio for f0(1500) → KK.
The so far unknown couplings of f0(980) to KK and ηπ was determined from a comparison of
the channels π0π0η and π±K∓KL.

9 Annihilation at Rest into 5π

Resonances in ρ+ρ− have been reported in pn annihilation in deuterium: A 2++ state was
observed in bubble chamber exposures in liquid deuterium (Bridges, 1987). An enhancement
was also seen around 1500 MeV by the Asterix collaboration at LEAR in gaseous deuterium
but no spin-parity analysis was performed (Weidenauer, 1993). This state was interpreted as
f2(1565) in its ρρ decay mode, the slightly lower mass being due to π-rescattering with the
recoil proton exciting the ∆ resonance (Kolybashov, 1989). The 2++ assignment was, however,
disputed in favour of 0++ by a reanalysis of the bubble chamber data (Gaspero, 1993).

The Crystal Barrel has also searched for scalar mesons decaying to 4π. The 4π0 decay
mode was investigated using pp annihilation into 5π0, leading to 10 detected photons (Abele,
1996c). The branching ratio for annihilation into 5π0 was found to be (7.1± 1.4)× 10−3. After
removing the η → 3π0 contribution they performed a maximum likelihood analysis of a sample
of 25,000 5π0 events. The data demand contributions from π(1330)→ 3π0 and from two scalar
resonances decaying to 4π0. The mass and width of the lower state, presumably f0(1370), could
not be determined precisely.

The upper state has mass ∼ 1505 MeV and width ∼ 169 MeV and decays into two ππ
S-wave pairs and π0(1300)π0 with approximately equal rates. The branching ratio for pp →
f0(1500)π0→ 5π0 is (9.0 ± 1.4) ×10−4. Using the 2π branching ratio from the coupled channel
analysis one finds

B(f0(1500)→ 4π)

B(f0(1500)→ 2π)
= 2.1± 0.6, (112)

B(f0(1500)→ 4π0)

B(f0(1500)→ ηη)
= 1.5± 0.5. (113)

The 4π0 (2π0) contribution in (112) has been multiplied by 9 (3) to take into account the
unobserved charged pions. The ratio (112) is, in principle, a lower limit which does not include
ρρ. However, a reanalysis of the Mark III data on J/ψ → γ2π+2π− finds evidence for f0(1500)
decaying to 4π through two S- wave dipions with negligible ρρ contribution (Bugg, 1995).
The ratio (113) is in agreement with the result for the former f0(1590) from Alde (1987) in
π−p→ 4π0n: 0.8 ± 0.3.

A scalar resonance with mass 1374 ± 38 and width 375 ± 61 MeV decaying to π+π−2π0

was also reported by Crystal Barrel in the annihilation channel π+π−3π0 (Amsler, 1994d). The
branching ratio for π+π−3π0 was measured to be (9.7 ± 0.6) %. The 4π decay mode of the
resonance is five times larger than the 2π, indicating a large inelasticity in the 2π channel. The
relative decay ratio to ρρ and two ππ S-waves is 1.6 ± 0.2. However, the data do not exclude
the admixture of a f0(1500) contribution.
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10 The New Mesons

We now discuss the properties of the mesons a0(1450), f0(1370), f0(1500) and f2(1565), reported
in sections 8 and 9. It is instructive to first check the consistency within Crystal Barrel data
and also to compare with previous measurements. The squares of the isospin Clebsch-Gordan
coefficients determine the total branching ratios, including all charge modes. Note that two
neutral isovectors (e.g. a0

2(1320)π0) do not contribute to I = 1. Table 12 gives the corresponding
weights to KK. For K∗(892), K∗0(1430), a2(1320) and a0(1450) contributions to KKπ the
π0KLKL ratios in Table 11 must be multiplied by 12 while those for f2(1270), f0(1370), f0(1500)
and f ′2(1525) must be multiplied by 4 (since KS is not observed). For π±K∓KL the resonance
contributions in Table 11 have to be multiplied by 3 for K∗(892), K∗0(1430), by 3 for a0(980),
a2(1320), ρ(1450/1700) from I = 0 and by 2 for a2(1320), ρ(1450/1700) from I = 1.

Table 12: Weights of the channels contributing to pp→ πKK. I refers to the pp isospin and i
to the Kπ or KK isospin.

Channel Kπ KK
i = 1/2 i = 1 i = 0 i = 1
I = 0, 1 I = 1 I = 1 I = 0

π±K∓K0 4 2 0 4
π0K+K− 1 0 1 1
π0K0K0 1 0 1 1

Furthermore, the branching ratios must be corrected for all decay modes of the intermediate
resonances to obtain the two-body branching ratios in Table 13. We have used the follow-
ing decay branching ratios (Barnett, 1996): (28.2±0.6)% for f2(1270) → π0π0, (4.6±0.5)%
for f2(1270) → KK, (14.5±1.2)% for a2(1320) → ηπ, (4.9±0.8)% for a2(1320) → KK,
(0.57±0.11)% for a2(1320) → η′π and (88.8±3.1)% for f ′2(1525) → KK. There are indica-
tions that the a2(1320) contribution to ππη is somewhat too large. Otherwise the consistency
is in general quite good and Crystal Barrel results also agree with previous data. This gives
confidence in the following discussion on the new mesons.

10.1 a0(1450)

We begin with the isovector a0(1450) which has been observed in its ηπ, η′π and KK decay
modes. Averaging mass and width from the coupled channel and the KK analyses one finds:

a0(1450) : m = 1474± 19, Γ = 265± 13 MeV. (114)

The a0(1450) decay rates are related by SU(3)-flavor which can be tested with Crystal Barrel
data. Following Amsler and Close (1996) we shall write for a quarkonium state

|qq〉 = cosα|nn̄〉 − sinα|ss̄〉, (115)

where
|nn̄〉 ≡ (uū+ dd̄)/

√
2. (116)
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Table 13: Branching ratios B for two-body pp annihilation at rest in liquid hydrogen (including
all decay modes), calculated from the final states given in the last column.
a assumes 100% b1 decay to πω
b using B(π0φ) from Table 6 and Eq. (47)

Channel B Final state or ref.
f2(1270)π0 3.1 ± 1.1 10−3 π0π0π0

f2(1270)π0 3.7 ± 0.7 10−3 π0KLKL

4.3 ± 1.2 10−3 Foster (1968b)
f2(1270)ω 3.26 ± 0.33 10−2 Bizzarri (1969)
f2(1270)ω 2.01 ± 0.25 10−2 Amsler (1993a)
f0(1500)π0 1.29 ± 0.11 10−2 π0KLKL

f ′2(1525)π0 7.52 ± 1.20 10−5 π0KLKL

a2(1320)π 3.93 ± 0.70 10−2 π0π0η
(1S0) 3.36 ± 0.94 10−2 π0π0η′

1.55 ± 0.31 10−2 π0KLKL

2.44 +
−

0.44
0.64 10−2 π±K∓KL

1.32 ± 0.37 10−2 Conforto (1967)
a±2 (1320)π∓ 5.79 ± 2.02 10−3 π±K∓KL

(3S1) 4.49 ± 1.83 10−3 Conforto (1967)
b±1 (1235)π∓ 7.9 ± 1.1 10−3 Bizzarri (1969) a

b0
1(1235)π0 9.2 ± 1.1 10−3 Amsler (1993a) a

a0
2(1320)ω 1.70 ± 0.15 10−2 Amsler (1994c)
K∗(892)K 7.05 ± 0.90 10−4 π±K∓KL

(1S0) 1.05 ± 0.08 10−3 π0KLKL

1.5 ± 0.3 10−3 Conforto (1967)
K∗(892)K 2.11 ± 0.28 10−3 π±K∓KL

(3S1) 2.70 ± 0.37 10−3 π0KSKL
b

≥ 2.51 ± 0.22 10−3 Conforto (1967)

The mixing angle α is related to the usual nonet mixing angle θ (Barnett, 1996) by the relation

α = 54.7◦ + θ. (117)

Ideal mixing occurs for θ = 35.3◦ (-54.7◦) for which the quarkonium state becomes pure ss
(nn).

The flavor content of η and η′ are then given by the superposition (see also Eq. (21))

|η〉 = cosφ|nn̄〉 − sinφ|ss̄〉,
|η′〉 = sinφ|nn̄〉+ cosφ|ss̄〉, (118)

with φ = 54.7◦+ θp, where θp is the pseudoscalar mixing angle which we take as θp = (−17.3±
1.8)◦ (Amsler, 1992b).

The partial decay width of a scalar (or tensor) quarkonium into a pair of pseudoscalars M1

and M2 is given by
Γ(M1,M2) = γ2(M1,M2)fL(p)p. (119)
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The couplings γ can be derived from SU(3)-flavor. The two- body decay momentum is denoted
by p and the relative angular momentum by L. The form factor

fL(p) = p2L exp(− p2

8β2
) (120)

provides a good fit to the decay branching ratios of the well known ground state 2++ mesons
if β is chosen ≥ 0.5 GeV/c (Amsler and Close, 1996). We choose β = 0.5 GeV/c although
the exponential factor can be ignored (β → ∞) without altering the forthcoming conclusions.
Replacing fL(p)p by prescription (28) also leads to a good description of decay branching ratios
provided that pR > 500 MeV/c, corresponding to an interaction radius of less than 0.4 fm
(Abele, 1997g).

The decay of quarkonium into a pair of mesons involves the creation of qq pair from the
vacuum. We shall assume for the ratio of the matrix elements for the creation of ss̄ versus uū
(or dd̄) that

ρ ≡ 〈0|V |ss̄〉〈0|V |uū〉 ' 1. (121)

This assumption is reasonable since from the measured decay branching ratios of tensor mesons
one finds ρ = 0.96 ± 0.04 (Amsler and Close, 1996). Similar conclusions are reached by Peters
and Klempt (1995).

Let us now compare the Crystal Barrel branching ratios for a2(1320) decays to KK, ηπ and
η′π with predictions from SU(3). One predicts for an isovector with the coupling constants γ
given in the appendix of Amsler and Close (1996):

Γ(a±2 (1320)→ K±K0)

Γ(a0
2(1320)→ ηπ0)

=
1

2 cos2 φ

f2(pK)pK
f2(pη)pη

= 0.295± 0.013, (122)

Γ(a0
2(1320)→ η′π0)

Γ(a0
2(1320)→ ηπ0)

= tan2 φ
f2(pK)pK
f2(pη)pη

= 0.029± 0.004. (123)

Both ratios are in excellent agreement with world data (Barnett, 1996). The Crystal Barrel
numbers to be compared with are taken from Tables 10 and 11 for I = 0. One finds the ratios
of branching ratios

B(a±2 (1320)→ K±K0)

B(a0
2(1320)→ ηπ0)

= 0.21+0.04
−0.06, (124)

B(a0
2(1320)→ η′π0)

B(a0
2(1320)→ ηπ0)

= 0.034± 0.009, (125)

in fair agreement with SU(3) predictions. We now compare predictions and data for a0(1450).
From SU(3) one expects, using Eq. (122) and (123) with L = 0:

Γ(a±0 (1450)→ K±K0)

Γ(a0
0(1450)→ ηπ0)

= 0.72± 0.03, (126)

Γ(a0
0(1450)→ η′π0)

Γ(a0
0(1450)→ ηπ0)

= 0.43± 0.06, (127)

in agreement with the experimental results from Tables 10 and 11:

B(a±0 (1450)→ K±K0)

B(a0
0(1450)→ ηπ0)

= 0.88± 0.23, (128)

B(a0
0(1450)→ η′π0)

B(a0
0(1450)→ ηπ0)

= 0.35± 0.16. (129)
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This then establishes a0(1450) as a qq isovector in the scalar nonet.
The existence of a0(1450) adds further evidence for a0(980) being a non- qq state. The

f0(980) and a0(980) have been assumed to be KK molecules (Weinstein, 1990; Close, 1993).
This is motivated by their strong couplings to KK - in spite of their masses close to the KK
threshold - and their small γγ partial widths. For f0(980) the 2γ partial width is Γγγ = (0.56
± 0.11) keV (Barnett, 1996). The relative ratio for a0(980) decay to KK and ηπ has been
determined by Crystal Barrel (Eq. (111)). Using

ΓγγB(a0(980)→ ηπ) = 0.24± 0.08 keV (130)

(Barnett, 1996), one then derives the partial width Γγγ = (0.30 ± 0.10) keV. Thus the 2γ partial
widths for f0(980) and a0(980) appear to be similar, close to predictions for KK molecules (0.6
keV) and much smaller than for qq states (Barnes, 1985). However, not everybody agrees: In
Törnqvist (1995) the f0(980)/f0(1370) and the a0(980)/a0(1450) are different manifestations
of the same uniterized ss and ud states, while the broad structure around 1100 MeV is the
uu + dd state (Törnqvist and Roos, 1996). This then leaves f0(1500) as an extra state. The
nature of a0(980) and f0(980), whether qq mesons, four-quark states or KK molecules, will be
clarified at DAφNE, by measuring the branching ratios for radiative φ decay to a0(980) and
f0(980) (Achasov and Gubin, 1997).

10.2 f0(1370) and f0(1500)

From the single channel analyses and the KK decay mode we find for f0(1370) and f0(1500)
the average masses and widths:

f0(1370) : m = 1360± 23 MeV, Γ = 351± 41 MeV,

f0(1500) : m = 1505± 9 MeV, Γ = 111± 12 MeV. (131)

The closeness of a0(1450) and f0(1500) or even f0(1370) masses is conspicuous and points to
a close to ideally mixed scalar nonet, one of the latter mesons being one of the qq isoscalars.
However, f0(1500) with a width of about 100 MeV is much narrower than a0(1450), f0(1370)
and K∗0(1430) with widths of typically 300 MeV. Theoretical predictions for the widths of scalar
qq mesons, based on the 3P0 model, agree that scalar qq mesons have widths of at least 250
MeV (for a discussion and references see Amsler and Close (1996)). We therefore tentatively
assign f0(1370) to the ground state scalar nonet.

If f0(980) is indeed a molecule then the (mainly) ss member of the scalar nonet still needs
to be identified. We now show from their decay branching ratios that neither f0(1370) nor
f0(1500) are likely candidates. To investigate the quark content of f0(1500) we calculate its
relative couplings to ηη, ηη′ and KK and search for a common value of the scalar mixing angle
α. The ratios of couplings for a pseudoscalar mixing angle φ are (Amsler and Close, 1996):

R1 ≡
γ2(ηη)

γ2(ππ)
=

(cos2 φ−
√

2 tanα sin2 φ)2

3
,

R2 ≡
γ2(ηη′)

γ2(ππ)
=

2(cosφ sinφ[1 +
√

2 tanα])2

3
,

R3 ≡
γ2(KK)

γ2(ππ)
=

(1−
√

2 tanα)2

3
. (132)
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For ηη and ππ we use the branching ratios from the coupled channel analysis (Table 10) and
multiply ππ by 3 to take into account the π+π− decay mode. The branching ratio for KK
is taken from Table 11 and is multiplied by 4. The branching fractions are, including the 4π
mode from Eq. (112) and ignoring a possible small ρρ contribution to 4π:

ππ : (29.0 ± 7.5) %
ηη : (4.6 ± 1.3) %
ηη′ : (1.2 ± 0.3) %
KK : (3.5 ± 0.3) %
4π : (61.7 ± 9.6) %.

(133)

After correcting for phase space and form factor (Eq. (120)) we obtain:

R1 = 0.195± 0.075, R2 = 0.320± 0.114, R3 = 0.138± 0.038. (134)

Since f0(1500) lies at the ηη′ threshold we have divided the branching ratios by the phase space
factor ρ integrated over the resonance and have neglected the form factor when calculating R2.
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Figure 34: Tangent of the nonet mixing angle α as a function of R1 (solid), R2 (dotted) and
R3 (dashed curve). The shaded areas show the experimentally allowed regions for f0(1500),
assuming that this state is qq.

Previously, the upper limit for R3 was < 0.1 (95% confidence level) from Gray (1983), in
which case no value for the mixing angle α could simultaneously fit R1, R2 and R3 (Amsler
and Close, 1996), therefore excluding f0(1500) as a qq state. The (1σ) allowed regions of
tanα are shown in Fig. 34 for the ratios (134). The agreement between R1 and R3 is not
particularly good. Remember, however, that branching ratios are sensitive to interference effects
and therefore caution should be exercized in not overinterpreting the apparent discrepancy in
Fig. 34. On the basis of the ratios (134), one may conclude that f0(1500) is not incompatible
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with a mainly uu + dd meson (α = 0). For a pure ss state (α = 90◦) the ratios (134) would,
however, become infinite. Therefore f0(1500) is not the missing ss scalar meson.

Similar conclusions can reached for f0(1370) which has small decay branching ratios to ηη
and KK. Precise ratios Ri are difficult to obtain in this case since the branching ratio to ππ
in Table 10 also includes the low energy ππ S-wave, in particular f0(400 − 1200). Note that
in the alternative analysis of Abele (1996a) which uses some of the available π−p → KKn
data, the f0(1370) mass and width are reported to be smaller, 1300 ± 15 MeV and 230 ± 15
MeV, respectively. The ππ → KK data alone already demand a mass of ' 1300 MeV and a
width of ' 230 MeV. This is surprising since the authors of these experiments have published
quite different values (Barnett, 1996). Also, some of the ππ → KK data are known to be
inconsistent (Au, 1987). In fact, a glance through the f0(1370) entry in “Review of Particle
Physics” (Barnett, 1996) shows a considerable uncertainty in mass and width from previous
experiments. A coupled channel analysis of Crystal Barrel data, also including the πKK data
presented in section (8.7) and (8.8) will have to be performed to stabilize the f0(1370) mass
and width, as well as its KK decay branching ratio.

This analysis shows that both f0(1370) and f0(1500) are compatible with isoscalar uu+ dd
states, although the latter is much too narrow for the ground state scalar nonet. This then
raises the question on whether f0(1500) could not be the first radial excitation of f0(1370).
This is unlikely because (i) the splitting between ground state and first radial is expected to be
around 700 MeV (Godfrey and Isgur, 1985), (ii) the next K∗0 lies at 1950 MeV (Barnett, 1996)
and, last but not least, first radials are expected to be quite broad (Barnes, 1997).

The most natural explanation is that f0(1500) is the ground state glueball predicted in this
mass range by lattice gauge theories. However, a pure glueball should decay to ππ, ηη, ηη′ and
KK with relative ratios 3 : 1 : 0 : 4, in contradiction with our ratios Ri. In the model of Amsler
and Close (1996) the finite ηη′ and the small KK rates can be accommodated by mixing the
pure glueball G0 with the nearby two nn and ss states. Conversely, the two isoscalars in the
qq nonet acquire a gluonic admixture. In first order perturbation one finds11

|f0(1500)〉 =
|G0〉+ ξ(

√
2|nn〉+ ω|ss〉)√

1 + ξ2(2 + ω2)
, (135)

where ω is the ratio of mass splittings

ω =
m(G0)−m(nn)

m(G0)−m(ss)
. (136)

In the flux tube simulation of lattice QCD the pure gluonium G0 does not decay to ππ nor
to KK in first order and hence f0(1500) decays to ππ and KK through its qq admixture in
the wave function. If G0 lies between the two qq states, ω is negative and the decay to KK is
hindered by negative interference between the decay amplitudes of the nn and ss components
in Eq. (135). The ratio of couplings to KK and ππ is

γ2(KK)

γ2(ππ)
=

(1 + ω)2

3
. (137)

The cancellation is perfect whenever G0 lies exactly between nn and ss (ω = −1). We find
with the measured R3 two solutions, ω = - 0.36 or -1.64. Assuming that f0(1370) is essentially

11We assume here that the quark-gluon coupling is flavor blind, see Amsler and Close (1996) for a
generalization.
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nn (with a small gluonic admixture) this leads to an ss state around 1900 MeV or 1600 MeV,
respectively. Furthermore, the ratio of ππ partial widths for f0(1500) and f0(1370), divided by
phase-space and form factor, is given by

Γ̃2π[f0(1500)]

Γ̃2π[f0(1370)]
=

2ξ2(1 + 2ξ2)

1 + ξ2(2 + ω2)
∼ 0.5, (138)

using for f0(1500) the branching ratios from Tables 10 and 11 and the 4π/2π ratio (112). There
is, however, a large uncertainty in the ratio (138) due to the branching ratios of f0(1370) which
cannot easily be disentangled from f0(400− 1200). This then leads to |ξ| ∼ 0.6 and according
to Eq. (135) to about 30% or about 60% glue in f0(1500) for an ss state at 1600 MeV or 1900
MeV, respectively.

The f0(1500) has also been observed in pp annihilation at higher energies (Armstrong, 1993)
and in other reactions, in particular in central production, decaying to 2π+2π− (Antinori, 1995;
Barberis 1997a). The VES experiment, studying π−p interactions on nuclei at 36 GeV/c, has
reported a resonance, π(1800), decaying to π−ηη′ (Beladidze, 1992) and π−ηη (Amelin, 1996).
The π(1800) appears to decay into a resonance with mass 1460 ± 20 MeV and width 100 ± 30
MeV - in agreement with f0(1500) - with a recoiling π. They report an ηη′/ηη ratio of 0.29 ±
0.07 which is in excellent agreement with the Crystal Barrel ratio for f0(1500) decays, 0.27 ±
0.10 (Table 10). Note that if π(1800) is indeed a qqg (hybrid), as advocated by Close and Page
(1995), then decay into gluonium is favoured,.

A reanalysis of J/ψ radiative decay to 2π+2π− finds evidence for f0(1500) decaying to two
S-wave dipions with a branching ratio in J/ψ → γ4π of (5.7± 0.8)× 10−4 (Bugg, 1995). This
leads to an expected branching ratio of (2.7 ± 0.9) × 10−4 in J/ψ → γ2π, using the Crystal
Barrel result (112). It is interesting to compare this prediction with data on J/ψ → γπ+π− from
Mark III (Baltrusaitis, 1987) where f2(1270) is observed together with a small accumulation of
events in the 1500 MeV region. Assuming that these are due to f0(1500), one finds by scaling
to f2(1270) a branching ratio in J/ψ → γ2π of ' 2.9 × 10−4, in agreement with the above
prediction.

Summarizing, f0(1500) has been observed in pp annihilation in several decay modes, some
with very high statististics (∼ 150,000 decays into π0π0) and also in other processes that are
traditionally believed to enhance gluonium production, central production and J/ψ radiative
decay. The K∗0(1430) and a0(1450) define the mass scale of the qq scalar nonet. The f0(1500) is
not the missing ss and is anyway too narrow for a scalar qq state. The most natural explanation
for f0(1500) is the ground state glueball mixed with nearby scalars. The missing element in
this jigsaw puzzle is the ss scalar expected between 1600 and 2000 MeV. The analysis of in
flight annihilation data will hopefully provide more information in this mass range. The spin of
fJ(1710) has not been determined unambiguously. If J = 0 is confirmed then fJ(1710) could
be this state or, alternatively, become a challenger for the ground state glueball (Sexton, 1995).
A more detailed discussion on f0(1500) and fJ(1710) can be found in Close (1997).

10.3 f2(1565)

The f2(1565) with mass 1565 ± 20 and width 170 ± 40 MeV has been observed first by the
Asterix collaboration at LEAR in the final state π+π−π0 in hydrogen gas (May, 1989, 1990).
A combined analysis of pp → π+π−π0 in low pressure gas, gas at 1 atm and in liquid has
been performed by the Obelix collaboration (Bertin, 1997a). Both f0(1500) and f2(1565) are
observed, albeit with somewhat smaller masses, 1449 ± 20 and 1507 ± 15 MeV, respectively.
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The lower mass for f2(1565), compared to the data of the Asterix collaboration (May, 1989,
1990), is not too surprising: A tensor was strongly favored by the data and there was no reason
to add a scalar contribution, since f0(1500) was not known at that time.

The f2(1565) was reported by Aker (1991) in the 3π0 final state in liquid. The 3π0 analysis
gave 60% P-state contribution to 3π0 in liquid with roughly equal intensities from f2(1565) of
9%, each from 1S0, 3P1 and 3P2. The full 3π0 data sample demands 46% P-state annihilation
(Amsler, 1995f) and also requires a tensor around 1530 MeV (section 8.3). The ss tensor,
f ′2(1525), has been observed in its KK decay mode (section 8.7). From the observed rate (Table
13) and the known f ′2(1525) decay branching ratios (Barnett, 1996) one finds that f ′2(1525)
cannot account for much of the 2++ signal in ππ or ηη. Hence f2(1565) is not f ′2(1525).

The large P-state fraction in the 3π0 channel in liquid is not too surprising: the correspond-
ing channel pp→ π+π−π0 in liquid proceeds mainly from the (I=0) 3S1 atomic state while the
(I=1) 1S0 is suppressed by an order of magnitude (Foster, 1968b), as are normally P-waves in
liquid. On the other hand, the channel pp→ 3π0 proceeds only through the (I=1) 1S0 atomic
state while 3S1 is forbidden. Indeed the branching ratios for 3π0 is an order of magnitude
smaller than for π+π−π0 (Table 9). Hence for 3π0 S- and P-wave annihilations compete in
liquid.

A fraction of 50% P-wave was also required in the Dalitz plot analysis of the I = 1 final
state π−π0π0 at rest in liquid deuterium (Abele, 1997h) which shows evidence for f0(1500) and
f2(1565) production and requires in addition the ρ-meson and two of its excitations, ρ−(1450)
and ρ−(1700), decaying to π−π0.

However, the coupled channel analysis described in section 8.4, ignoring P-waves, still re-
quires a tensor at 1552 MeV. Neglecting P- waves increases slightly the contribution from
f0(1500) while decreasing the contribution from f2(1565), although the rates remain within
errors (compare the two π0π0 branching ratios in Table 10 for the single and coupled channel
analyses).

The alternative N/D analysis also reproduces the features of the 3π0 Dalitz plot without
P-wave contributions, in particular the scalar state around 1500 MeV (Anisovich, 1994). A
tensor contribution with mass ∼ 1565 and width ∼ 165 MeV is, however, still required, but
most of the blob structure in Fig. 22(c) is taken into account by interferences in the low energy
ππ S-wave.

An N/D analysis of Crystal Barrel data, together with former data from other reactions,
also reports a tensor with mass 1534 ± 20 and width 180 ± 60 MeV (Abele, 1996a). They
report strong ρρ and ωω contributions and therefore assign this signal to f2(1640) discovered by
GAMS in π−p→ ωωn (Alde 1990), also reported to decay into 4π by the Obelix collaboration
in np → 5π (Adamo, 1992). It should be emphasized, however, that in Abele (1996a) the
inelasticity in the K-matrix is attributed to ρρ and ωω, although no 4π data are actually
included in the fit. Given that mass and width of the tensor agree with f2(1565), but disagree
with f2(1640), it seems more natural to assign the 2++ signal to the former. It is interesting
to note that a 2++ ρρ molecule (Törnqvist, 1991) or a 2++ baryonium state (Dover, 1986)
decaying strongly to ρρ (Dover, 1991) are predicted in this mass range. The f2(1565) could be
one of these states.

In conclusion, there is a certain amount of model dependence when extracting the precise
production and decay rates of f2(1565). However, annihilation data require both a scalar and
a tensor around 1500 MeV and the parameters and rates for f0(1500) are reasonably stable,
independent of f2(1565) contribution. The Crystal Barrel data in gas will hopefully settle the
issue of the fraction of P- wave in 3π0 annihilations.
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11 Search for Hybrids

The familiar qq color-neutral configuration is not the only one allowed by QCD. One expects
multiquark mesons (q2q2, q3q3) and hybrid states (qqg). For q2q2-mesons one predicts a rich
spectrum of isospin 0, 1 and 2 states in the 1 - 2 GeV region, none of which has been established
so far. This casts doubt on whether multiquark states really bind or are sufficiently narrow to
be observed. Bag model predictions for 0+, 1+ and 2+ q2q2 states have been presented by Jaffe
(1977).

The flux tube model predicts that hybrids should lie in the 1.9 GeV region, the ground
states being 0−+, 1−+, 2−+ and 1−− (Isgur and Paton, 1985; Close and Page, 1995). Lattice
QCD also predicts the lightest hybrid, a 1−+, around 2000 MeV (Lacock, 1997). These hybrids
have distinctive decay patterns. They are expected to decay mainly into an S-wave and a P-
wave meson (e.g. f1(1285)π, b1(1235)π), while the decay into two S-wave mesons is suppressed
(Page, 1997). A 1−+ structure around 2 GeV decaying to f1(1285)π has been reported (Lee,
1994). The 0−+ π(1800) has been observed to decay into f0(980)π and f0(1370)π but not into
K∗K nor ρπ (Amelin, 1995; Berdnikov, 1994), in line with the prediction that a 0−+ hybrid
should decay dominantly into an S-wave and a P-wave meson. We shall discuss the evidence
for a 2−+ hybrid below, in connection with Crystal Barrel data.

However, the bag model predicts a 1−+ hybrid meson at a much lower mass, around 1.4
GeV (Barnes, 1983). A state with quantum numbers 1−+ does not couple to qq, as can be
verified from Eqs. (17) and (18) which also apply to qq states: For 1−+ Eq. (17) requires ` to
be even and then Eq. (18) implies that s = 0, thus excluding J = 1. It is easy to show that the
quantum numbers 0−−, 0+− and 2+− do not couple to qq either. The discovery of a state with
such quantum numbers would prove unambiguously the existence of exotic (non-qq) mesons.

11.1 ρ̂(1405)

A 1−+ hybrid around 1.4 GeV would decay to ηπ and η′π, where the two pseudoscalars are in a
relative P-wave. This state would be isovector and hence could not be confused with a glueball.
Both neutral and charged decays should be observed (ηπ0 and ηπ±). A candidate, ρ̂(1405)
with mass 1406 ± 20 MeV and width 180 ± 20 MeV, has been reported in π−p → ηπ0n
at 100 GeV (Alde, 1988a), but a reanalysis of the data claims ambiguous solutions in the
partial wave analysis (Prokoshkin and Sadovskii, 1995). More recently, ρ̂(1405) with mass
1370 +52

−34 MeV and width 385 +76
−112 MeV has been reported in the partial wave analysis of

π−p→ ηπ−p at 18 GeV (Thompson, 1997). It is observed as an interference between the L = 1
and L = 2 a2(1320) → ηπ amplitudes, leading to a forward/backward asymmetry in the ηπ
angular distribution.

Crystal Barrel has searched for a resonance in the ηπ P-wave using the final state ππη. A
weak 1−+ structure with poorly defined mass and width has been reported by Amsler (1994b)
in the π0π0η channel (section 8.2). This channel proceeds through the I = 0 pp initial state
1S0 (and 3P1, 3P2). It is conceivable that the production of ρ̂(1405) is suppressed from 1S0

but enhanced from 3S1. This initial state is accessible in deuterium with pn→ π−π0η (Abele,
1998a). Here I = 1 and G = +1 require ` + s to be odd (Eq. (19)) hence annihilation from
3S1 or 1P1. In deuterium the spectator proton may remove angular momentum and hence the
inclusion of initial P-waves becomes mandatory. The increasing complexity in the amplitude
analysis is, however, compensated by the absence of 0++ isocalars which do not contribute to
π−π0η.
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Events with a single π− and π0η → 4γ were selected from the 8.1 million 1-prong triggered
data sample in liquid deuterium. The single track requirement restricts the spectator proton
momentum to less than 200 MeV/c under which protons do not escape from the target. A 3C
fit was applied to select π−π0η with a missing proton. The missing proton momentum was then
limited to 100 MeV/c. This procedure permits the channel π−π0η to be treated as quasifree,
i.e. insensitive to final state rescattering with the proton. The branching ratio for pn→ π−π0η
was found to be (1.41 ± 0.15)%.
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Figure 35: Dalitz plot of pn→ π−π0η (52,576 events).

The Dalitz plot from the resulting 52,567 events is shown in Fig. 35. Conspicuous is the
strong production of ρ− and the accumulation of events in the ηπ mass regions around 1300 MeV
but only above the ρ band. This points to the presence of interferences between a2(1320) and
some other amplitude. A partial wave analysis was performed using Breit-Wigner amplitudes
and introducing contributions from ρ−(770), ρ−(1450), a2(1320) from 3S1 and a0(980), a0(1450)
from 1P1. The fit could not describe the observed interference pattern. The inclusion of a
resonant ηπ P-wave from both 3S1 and 1P1 led, however, to a good description of the data.
Contributions from ρ−(1450), a0(980), and a0(1450) were found to be negligible. The Breit-
Wigner mass and width of the 1−+ resonance are

ρ̂(1405) : m = 1400± 28, Γ = 310 +71
−58 MeV. (139)

The resonance contributes about 8% from 3S1 and 3% from 1P1. It interferes with both a2(1320)
and ρ−(770). The accumulation of events above the ρ (Fig. 35) leads to a forward/backward
asymmetry in the ηπ rest frame along the a2(1320) band.

These findings are consistent with the observation of an exotic 1−+ resonance in the 1400
MeV mass region. Mass and width are in good agreement with Thompson (1997). However, an
adequate fit can also be obtained with a 1 GeV broad enhancement in the ηπ P-wave, coupling
to the inelastic channel f1(1285)π and generating a cusp around threshold at 1420 MeV. This
should be clarified by measuring the branching ratio for f1(1285)ππ production in deuterium. If
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not a threshold effect, this meson could be a hybrid but also a four-quark state. A measurement
of the partial width into η′π would help to distinguish between the two alternatives (Close and
Lipkin, 1987).

11.2 η2(1870)

Two 2−+ isoscalars have been reported by Crystal Barrel in pp annihilation into 3π0η at 1.94
GeV/c (Adomeit, 1996). The first state is observed in π0π0η with mass and width

η2(1645) : m = 1645± 21, Γ = 180 +47
−33 MeV. (140)

Its dominant contribution to π0π0η stems from a2(1320)π. This state has been confirmed in
central collisions in the reaction pp→ pp2π+2π−, where it is observed to decay into a2(1320)π
(Barberis, 1997a) and in pp → ppKKπ, where it decays into K∗K (Barberis, 1997b). The
relative branching ratio for decay into K∗K and a2(1320)π is 0.07 ± 0.03, in accord with a
mainly uu+ dd meson.

The second state is also observed in π0π0η with mass and width

η2(1870) : m = 1875± 40, Γ = 200± 50 MeV. (141)

This is probably η2(1870) which has been observed earlier by Crystal Ball in π0π0η in γγ
collisions (Karch, 92) and more recently in 4π in central production (Barberis, 1997a). Crystal
Barrel finds for η2(1870) the dominant decay modes a0

2(1320)π0 and f2(1270)η. The ratio of
partial widths is

Γ(η2(1870)→ a2(1320)π)

Γ(η2(1870)→ f2(1270)η)
= 4.1± 2.3, (142)

corrected for all a2 and f2 decay modes.
Assuming that η2(1645) is mainly uu+ dd, the 2−+ qq nonet contains the previously known

π2(1670) and η2(1645), both made of u and d quarks. The nearly equal masses also points
to ideal mixing in the 2−+ nonet and therefore the ss state should mainly decay to K∗K,
while a2(1320)π and f2(1270)η should vanish in the limit of ideal mixing, in contrast to Crystal
Barrel data. It appears therefore unlikely that η2(1870) is the ss member of the 2−+ nonet.
Unfortunately, the KKπ data from Barberis (1997b) do not extend sufficiently high in mass to
provide information on the K∗K coupling of η2(1870).

Since this state is produced in γγ collisions (Karch, 92), it can hardly be a glueball. However,
the ratio (142) is in good agreement with the predicted ratio of 6 for a 2−+ hybrid (Close and
Page, 1995).

12 E/ι Decay to ηππ

The E meson, a 0−+ state, was discovered in the sixties in the KKπ mass spectrum of pp
annihilation at rest into (KSK

±π∓)π+π−. Its mass and width were determined to be 1425 ± 7
and 80 ± 10 MeV (Baillon, 1967). Its quantum numbers have remained controversial since other
groups have claimed a 0−+ state (now called η(1440)) and a 1++ state (now called f1(1420))
in this mass region from various hadronic reactions. A broad structure (previously called ι),
has also been observed in radiative J/ψ decay to KKπ (Scharre, 1980). Initially determined
to be 0−+, the E/ι structure was then found to split into three states, the first (0−+) at 1416
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± 10 MeV decaying to a0(980)π, the second (presumably the 1++ f1(1420)) at 1443 ± 8 MeV
and the third (0−+) at 1490 ± 16 MeV, both decaying to K∗K (Bai, 1990). The widths were
not determined accurately. The Obelix collaboration has analyzed the KKπ mass spectrum
in pp annihilation at rest in liquid and has also reported a splitting of the E meson into two
pseudoscalar states at 1416 ± 2 MeV (Γ = 50 ± 4 MeV) and 1460 ± 10 MeV (Γ = 105 ±
15 MeV) (Bertin, 1995). We shall refer to these pseudoscalars as η(1410) and η(1460). When
using gaseous hydrogen, one expects the production of 1++ mesons from 3P1 recoiling against
an S- wave dipion: Bertin (1997b) indeed observes three states in the KKπ mass spectrum in
gas: η(1410), f1(1420) and η(1460).

In J/ψ radiative decay, ι decays to KKπ through the intermediate a0(980) and hence a
signal was also expected in the a0(980)π → ηππ mass spectrum. This has indeed been observed
by Mark III and DM2: Bolton (1992) reports a signal in a±0 π

∓ at 1400 ± 6 MeV (Γ = 47 ±
13 MeV) and Augustin (1990) in ηπ+π− at 1398 ± 6 MeV (Γ = 53 ± 11 MeV). We shall
tentatively assign these signals to η(1410).

To clarify whether the structures observed in J/ψ radiative decay and in pp annihilation are
compatible and in particular to confirm the quantum numbers of E (0−+ and not 1++) Crystal
Barrel has searched for the ηππ decay mode of the E meson in the reaction pp→ (ηπ+π−)π0π0

and (ηπ0π0)π+π−, leading to two charged particles and 6γ (Amsler, 1995h; Urner, 1995). Since
the rate for this reaction was expected to be rather small (∼ 10−3 of all annihilations), an online
trigger required 8 clusters in the barrel and at least two π0 and one η. A 7C kinematic fit then
selected the channel π+π−2π0η while suppressing π+π−2ηπ0 and π+π−3π0. The branching ratio
for π+π−2π0η was found to be (2.09 ± 0.36) %.

The final state π+π−2π0η includes a strong contribution from ωηπ0 (ω → π+π−π0), a
channel that has been studied in its 7γ decay mode (Amsler, 1994c). Events compatible with
ωηπ0 were removed, leaving a sample of about 127,000 π+π−2π0η events. The evidence for
η(1410) decaying to ηππ is shown in the π0π0η and π+π−η mass distributions (Fig. 36). Some
9,000 η(1410) decays into ηππ are observed in Fig. 36, an order of magnitude more than for E
to KKπ in the seminal work of Baillon (1967).

A partial wave analysis was performed using a maximum likelihood optimization. The signal
at 1400 MeV was described by the annihilation channels

pp → η(1410)(→ ησ0)σ+−,

→ η(1410)(→ a0
0(980)π0)σ+−,

→ η(1410)(→ ησ+−)σ0,

→ η(1410)(→ a±0 (980)π∓)σ0, (143)

where σ0 and σ+− are shorthands for the π0π0 and π+π− S-waves. The latter were described
by prescriptions of the form (100) which is reasonable since the ππ masses lie below 900 MeV.
Background contributions, e.g. from ηρ0σ0 and η′ρ0, were also included in the fit. Figure 37
shows for example the a±0 (980) angular distribution in the η(1410) rest frame together with the
best fit for a 0−+ state. The data exclude 1++, hence η(1410) is definitively pseudoscalar and
is produced from the 1S0 atomic state. It has mass and width

η(1410) : m = 1409± 3 MeV, Γ = 86± 10 MeV. (144)

The width is somewhat larger than for ηππ in J/ψ decay (Bolton, 1992; Augustin, 1990) and
for KKπ in pp annihilation at rest (Bertin, 1995).
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Figure 37: Angular distribution of a0(980)± in the η(1410) rest frame. The data are shown
with error bars. The full curve shows the fit for a 0−+ state and the dashed curve the prediction
for a 1++ state produced with the same intensity.

The branching ratio to KKπ has been measured earlier (Baillon, 1967):

B(pp→ Eππ,E → KKπ) = (2.0± 0.2)× 10−3, (145)

while Crystal Barrel finds for the ηππ mode

B(pp→ η(1410)ππ, η(1410)→ ηππ) = (3.3± 1.0)× 10−3. (146)

The fit yields ησ and a0(980)(→ ηπ)π decay contributions with the relative rate

B(η(1410)→ ησ → ηππ)

B(η(1410)→ a0(980)π → ηππ)
= 0.78± 0.16. (147)

Assuming that 50% of the KKπ mode proceeds through η(1410) decaying to a0(980)π (Baillon,
1967) one can estimate from these branching ratios

B(a0(980)→ KK)

B(a0(980)→ ηπ)
∼ 0.54± 0.18, (148)

somewhat larger but not in violent disagreement with the result (111). Note that Alde (1997)
finds a much higher ratio ησ/a0π (Eq. (147)) of 4.3 ± 1.2 which would then increase the KK
to ηπ ratio, Eq. (148), substantially. A contamination from the nearby f1(1420)→ ηππ could
explain the discrepancy. This state is produced strongly in high energy interactions (Barberis,
1997b) and has a small a0(980)π decay branching ratio (Barnett, 1996).

The observation of the ηπ0π0 decay mode lifts the earlier isospin ambiguity for the E meson
and clearly establishes that this state is isoscalar (C = +1). Note that the Crystal Barrel
data do not exclude the presence of the other I = 0 pseudoscalar, η(1460), since the latter was
observed in K∗K and not in ηππ.
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The first radial excitation of the η could be η(1295) decaying to ηππ (Barnett, 1996). Hence
one of two pseudoscalars in the ι structure could be the radial excitation of the η′. The near
equality of the η(1295) and π(1300) masses suggests an ideally mixed nonet of 0−+ radials. This
implies that the second isoscalar in the nonet should be mainly ss and hence decays to K∗K,
in accord with observations for η(1460). This scheme then favours an exotic interpretation for
η(1410), perhaps gluonium mixed with qq (Close, 1997) or a bound state of gluinos (Farrar,
1996). The gluonium interpretation is, however, not favoured by lattice gauge theories, which
predict the 0−+ state above 2 GeV (see Szczpaniak (1996)). Bugg and Zou (1997) argue that
the ss state expected around 1530 MeV is pushed down to 1410 MeV by a pseudoscalar glueball
between 1750 and 2100 MeV. In this case, however, the nature of η(1460) remains unexplained.

13 Summary and Outlook

Crystal Barrel has collected 108 pp annihilation at rest in liquid hydrogen, three orders of mag-
nitudes more than previous bubble chamber experiments. The results reviewed in this report
were achieved thanks to the availability of pure, cooled and intensive low energy antiproton
beams which allow a good spatial definition of the annihilation source and thanks to the re-
finement of the analysis tools warranted by the huge statistical samples. The data processed
so far concentrate on annihilations at rest into 0-prong that had not been investigated before.
The data collected with the 0-prong trigger correspond to 6.3× 108 annihilations.

The measurement of the branching ratio for annihilation into π0π0 leads, together with a
cascade calculation of the antiprotonic atom, to a fraction of (13 ± 4) % P-wave in liquid
hydrogen. Therefore S-wave dominance has been, in general, assumed to analyze Dalitz plots.
The inclusion of P-waves increases the number of fitting parameters and often leads to unstable
fits. This limitation will be removed by analyzing simultaneously the high statistics data in
liquid and gaseous hydrogen.

The branching ratios for annihilation into two neutral light mesons (π0η, π0η′, ηη, ηη′, ωη,
ωη′, ηρ0, η′ρ0) reveal the interplay of constituent quarks in hadrons. The non-planar quark
rearrangement graph must play an important role in the annihilation process. Using the OZI
rule the pseudoscalar mixing angle was determined to be (−17.3± 1.8)◦.

However, the production of φ mesons is enhanced in nearly all channels compared to pre-
dictions by the OZI rule. The most significant deviation is found in the annihilation channel
π0φ. After phase space correction, the π0φ/π0ω ratio is (10.6 ± 1.2) % while OZI predicts 0.42
%. Whether this enhancement can be explained by final state interaction or by ss pairs in
the nucleon is not clear yet. The analysis of data in P-state annihilations, in gas or at higher
momenta, will be helpful in settling the nature of this phenomenon.

In electromagnetic processes, the radiative annihilations π0γ, ηγ and ωγ have been observed
with rates consistent with predictions from VDM, but φγ is enhanced. The branching ratio
for ω → ηγ, (6.6 ± 1.7) × 10−4, was measured independently of ρ − ω interference. This
results solves the ambiguity in e+e− formation experiments, selecting the constructive ρ − ω
interference solution. The η → 3π0 Dalitz plot is not homogeneous but shows a negative slope
of α = 0.052 ± 0.020, somewhat at variance with chiral perturbation theory. Crystal Barrel
data also confirms the evidence for the direct decay η′ → π+π−γ, in addition to η′ → ργ.

A decisive progress has been achieved in understanding scalar mesons by studying anni-
hilation into three pseudoscalars. An isovector state, a0(1450), with mass and width (m,Γ)
= (1474 ± 19, 265 ± 13) MeV has been observed to decay into ηπ, η′π and KK with rates
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compatible with SU(3) flavor. The existence of a0(1450) adds evidence for a0(980) not being
qq, but perhaps a KK molecule. The ratio of a0(980) decay rates to KK and ηπ was measured
to be 0.23 ± 0.05. The nature of a0(980) (and f0(980)), whether a qq meson, a four-quark state
or a KK molecule, will be clarified at DAφNE, by studing radiative φ decay to a0(980) and
f0(980).

An isoscalar state, f0(1370), with mass and width (m,Γ) = (1360 ± 23, 351 ± 41) MeV
has been observed to decay into ππ, ηη, KK and 4π. Obtaining accurate branching ratios for
f0(1370) is difficult due to interferences with the broad structure f0(400−1200). The nature of
this structure (meson or slowly moving background phase) is unclear. Whether f0(400− 1200)
is really distinct from f0(1370) is not entirely clear. Both questions will probably remain with
us for some time. The states a0(1450), f0(1370) and K∗0(1430) are broad, consistent with
expectations for qq scalar mesons, although there is some uncertainty in the mass, width and
KK decay branching ratio of f0(1370). A coupled channel analysis of Crystal Barrel data
including the πKK data will be helpful. The small coupling of f0(1370) to KK makes it an
unlikely candidate for the ss meson, which is therefore still missing.

An additional isoscalar state, f0(1500), with mass and width (m,Γ) = (1505 ± 9, 111 ±
12) MeV has been observed to decay into ππ, ηη, ηη′, KK and 4π. The decay branching ratios
are 29, 5, 1 , 3 and 62 %, respectively. These rates exclude this state to be the missing ss.
Hence f0(1500) is supernumerary and anyway too narrow to be easily accommodated in the
scalar nonet. The likely explanation is that f0(1500) is the ground state glueball predicted by
QCD, mixed with the two nearby qq isoscalars, f0(1370) and the higher lying ss state. More
information on this state will hopefully emerge in the mass range above 1600 MeV from Crystal
Barrel data in flight. It is in particular crucial to search for fJ(1710) and to establish its spin
and its decay modes with high statistics data, since the latter could be the missing ss scalar.

The tensor f2(1565) is dominantly produced from P-states. It is, however, still required to
fit the data when assuming pure S-wave annihilation: Its mass and width are ' 1552 and '
142 MeV. The systematic inclusion of P-wave annihilation at rest in all analyses is prevented
by the large number of fit parameters. The simultaneous analysis of three neutral pseudoscalar
data from Crystal Barrel in liquid and gaseous hydrogen might alleviate this problem, perhaps
also modifying slightly some of the branching ratios obtained from liquid only.

The isovector ρ̂(1405) with exotic quantum numbers 1−+, mass 1400 ± 28 MeV and width
310 +71

−58 MeV has been observed by Crystal Barrel in the ηπ P-wave. This meson could be
a hybrid or a four-quark state. A measurement of the partial width into η′π would help to
distinguish between the two alternatives. However, flux tube models and lattice gauge theories
predict hybrids at higher masses. A study of the channel f1(1285)π in pn annihilation is required
to assess whether the threshold for this reaction can mimic a 1−+ resonance at 1400 MeV.

The isoscalar partner of π2(1670) in the 2−+ nonet, η2(1645), has been observed in its π0π0η
decay mode. Its mass and width are 1645 ± 21 MeV and 180 +47

−33 MeV, respectively. The
other 2−+ isoscalar, η2(1870) also observed in π0π0η, has decay branching ratios to a2(1320)π
and f2(1270)η compatible with those predicted for a hybrid state. The still missing ss state in
the 2−+ nonet would decay mainly to K∗K. It is therefore important to determine the K∗K
branching ratio of η2(1870).

A 0−+ state, η(1410), with mass and width (m,Γ) = (1409 ± 3, 80 ± 10) MeV has been
observed to decay into ηπ0π0 and ηπ+π−. The neutral decay mode establishes this state as
an isoscalar and, together with other experiments, strengthens the evidence for two I = 0
pseudoscalars in the 1400 - 1500 MeV region, the lowest lying state being perhaps a pseudoscalar
glueball, notwithstanding the prediction from lattice gauge theories that pseudoscalar glueballs
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lie above 2 GeV. A further clue to the nature of η(1410) could be obtained by searching for its
η′π0π0 decay mode and measuring its branching ratio.

Radial excitations of qq mesons have begun to emerge. Crystal Barrel data show evidence
for the two excitations of the ρ meson, ρ(1450) and ρ(1700) and for the radial excitation of
a2(1320) around 1650 MeV. It is essential to identify the qq radials in the 1500 MeV to 2000
MeV mass range and to measure their decay branching ratios into various channels, including
ηη, ηππ, KK and KKπ. Except for the exotic 1−+, hybrid mesons with the same quantum
numbers as qq radials are also predicted in this mass range. Once radials have been established,
supernumerary states will emerge. The distinct decay characteristics of hybrids into P- and
S-wave mesons will then permit to distinguish them from qq radials.

The analysis of Crystal Barrel data in-flight will hopefully reveal further radial excitations,
hybrid mesons and higher mass glueballs. For glueballs, a more definitive progress will probably
be achieved in radiative J/ψ decay at a high luminosity e+e− factory or in central collisions at
the forthcoming Compass experiment at CERN.
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